期刊文献+

储层含水条件下致密砂岩/页岩无机质纳米孔隙气相渗透率模型 被引量:10

MODEL FOR GAS TRANSPORT IN NANOPORES OF SHALE AND TIGHT FORMATION UNDER RESERVOIR CONDITION
下载PDF
导出
摘要 页岩及致密砂岩储层富含纳米级孔隙,且储层条件下页岩孔隙(尤其无机质孔隙)及致密砂岩孔隙普遍含水,因此含水条件下纳米孔隙气体的流动能力的评价对这两类气藏的产能分析及生产预测具有重要意义.本文首先基于纳米孔隙内液态水及汽态水热力学平衡理论,量化了储层孔隙含水饱和度分布特征;进一步在纳米孔隙单相气体传质理论的基础上,考虑了孔隙含水饱和度对气体流动的影响;最终建立了含水饱和度与气相渗透率的关系曲线.基于本文岩心孔隙分布特征,计算结果表明:储层含水饱和度对气体流动能力的影响不容忽视,在储层含水饱和度20%的情况下,气相流动能力与干燥情况相比将降低约10%;在含水饱和度40%的情况下,气相流动能力将降低约20%. The formations of shale gas and tight gas are abundant in the nanopores of shale and tight sandstone, and the pores are partially saturated with water under reservoir conditions, so the evaluation of gas flow capacity by considering water saturation is important to gas production forecast. Based on the thermodynamic equilibrium theory between liquid and vapor in formation nanopores, we quantify the distribution of reservoir pores water under ultra-low water saturation condition, and establish the relation between water saturation and gas phase permeability. Results show that the impacts of water saturation on the gas flow can be divided in two forms:(1)bound water film in large pores will reduce the effective pore diameter for gas flow;(2)capillary water in small pore will block the entire gas flow channel. And the effect of water saturation on gas flow capacity cannot be ignored. In case that water saturation is 20%, the gas flow capacity will reduce10%, compared with the dry conditions. Under the condition that water saturation is 40%, the gas flow capacity will be reduced by about 20%. The results calculated by the models in this paper are in agreement with the experimental results in a newly-published article.
出处 《力学学报》 EI CSCD 北大核心 2015年第6期932-944,共13页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(51490654) 中国石油大学(北京)科研基金(YJRC-2013-37)资助项目~~
关键词 超低含水饱和度 纳米孔隙 页岩 致密砂岩 气相渗透率 sub-irreducible water saturation nanopores shale gas tight gas gas phase permeability
  • 相关文献

参考文献39

  • 1Mosher K, He J, Liu Y, et al. Molecular simulation of methane ad- sorption in micro-and mesoporous carbons with applications to coal and gas shale systems. International Journal of Coal Geology, 2013, 109:36-44.
  • 2陈尚斌,朱炎铭,王红岩,刘洪林,魏伟,方俊华.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444. 被引量:358
  • 3胡勇,李熙喆,万玉金,陆家亮,朱华银,张玉丰,朱秋影,杨敏,牛丽伟.致密砂岩气渗流特征物理模拟[J].石油勘探与开发,2013,40(5):580-584. 被引量:50
  • 4朱如凯,白斌,崔景伟,吴松涛,崔京钢,王拓,牛露,李婷婷.非常规油气致密储集层微观结构研究进展[J].古地理学报,2013,15(5):615-623. 被引量:110
  • 5Jones FO, Owens WW. A laboratory study of low-permeability gas sands. Journal of Petroleum Technology, 1980, 32(09): 1631-1640.
  • 6Beskok A, Karniadakis GE, Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys- ical Engineering, 1999, 3(1): 43-77.
  • 7Javadpour E Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21.
  • 8Shi JT, Zhang L, Li YS, et al. Diffusion and flow mechanisms of shale gas through matrix pores and gas production forecasting. In: Society of Petroleum Engineers - SPE Canadian Unconventional Resources Conference, 2013:1127-1145.
  • 9Rahmanian M, Aguilera R, Kantzas A. A new unified diffusion- viscous-flow model based on pore-level studies of tight gas forma- tions. SPE Journal, 2012, 18(1): 38-49.
  • 10Wu KL, Li XF, Wang CC, et al. Apparent permeability for gas flow in shale reservoirs coupling effects of gas diffusion and des- orption. In: Proc. of Unconventional Resources Technology Con- ference (URTEC), 2014.

二级参考文献174

共引文献916

同被引文献177

引证文献10

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部