期刊文献+

基于类内类间距离的说话人特征优化

SPEAKER FEATURE OPTIMISATION BASED ON INTRA-CLASS AND INTER-CLASS DISTANCES
下载PDF
导出
摘要 为了提高说话人识别的准确率,对常用说话人特征优化算法进行研究。针对加权系数法用升半正弦函数求加权系数没有考虑特征参量具体情况的缺点,提出一种基于类内、类间距离求加权系数的说话人特征优化算法。此算法对于具体的说话人识别选择更加适合的加权系数。对于各种说话人特征优化算法进行仿真实验,结果表明,改进算法对于说话人特征优化的效果更好,识别率可以达到非常满意的效果。 In order to raise the accuracy of speaker recognition, we studied the commonly used speaker feature optimisation algorithm. Due to the defects that the specific situation of characteristic parameters were not taken into account by the weight coefficient algorithm in obtaining the weight coefficient with raised half sine-function, we presented a speaker feature optimisation algorithm which is based on obtaining the weight coefficient by intra-class and inter-class distances. For particular speaker recognition, this algorithm could choose more suitable weight coefficient. We carried out the simulation experiment on various speaker features optimisation algorithms. Experimental results showed that the modified algorithm had better results in speaker features optimisation and the recognition rate could reach an effect with high satisfaction.
出处 《计算机应用与软件》 CSCD 2015年第11期151-153,共3页 Computer Applications and Software
关键词 说话人识别 特征优化 加权系数 类内 类间距离 Speaker recognition Feature optimisation Weighting coefficient Intra-class Inter-classes distance
  • 相关文献

参考文献7

二级参考文献59

  • 1汪峥,连翰,王建军.说话人识别中特征参数提取的一种新方法[J].复旦学报(自然科学版),2005,44(1):197-200. 被引量:16
  • 2张芸,李昕,郑宇,杨庆涛.一种基于Fisher准则的说话人识别方法研究[J].兰州大学学报(自然科学版),2007,43(2):92-97. 被引量:5
  • 3Reynolds D A.An overview of automatic speaker recognition technology[C]//Intemational Conference on Acousitics, Speech, and Signal Processing(ICASSP),2002.
  • 4Saastamoinen J, Karpov E, Hautamaki V, et al.Accuracy of MFCC- based speaker recognition in series 60 device[J].EURASIP Journal on Applied Signal Processing, 2005,17: 2816-2827.
  • 5Chakroborty S, Roy A, Majurndar S, et al.Capturing complementary information via reversed filter bank and parallel implementation with MFCC for improved text-independent speaker identification[C]//International Conference on Computing Theory and Applications, 2007.
  • 6Bruges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery, 1998, 2: 121-167.
  • 7Li Zhiwei, Shen Minfen.Classification of mental task EEG signals using wavelet packet entropy and SVM[C]//The 8th International Conference on Electronic Measuremem and Instruments,2007,3: 906-909.
  • 8Ostendorf M, Favre B, Grishman R, et al.. Speech segmentation and spoken document processing[J]. IEEE Signal Processing Magazine, 2008, 25(3): 59-69.
  • 9Bouamrane M M and Luz S. Meeting browsing state-of-the- art review[J]. Multimedia Systems, 2007, 12(4-5): 439-457.
  • 10Tur G, Stolcke A, Voss L, et al.. The CALO meeting assistant system[J]. IEEE Transactions on Audio, Speech and Language Processing, 2010, 18(6): 1601-1611.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部