期刊文献+

基于Granger因果关系的多变量时间序列预测模型 被引量:2

MULTIVARIATE TIME SERIES PREDICTION MODEL BASED ON GRANGER CAUSALITY
下载PDF
导出
摘要 时间序列数据包含内在的时序结构,而传统的针对多变量时间序列的预测方法没有考虑变量序列的历史观察值的影响。为此,提出一种基于Granger因果关系挖掘的多变量时间序列预测模型。通过选择有效的因变量并加入其滞后观测期来提高支持向量回归对目标序列的预测,同时也提供了较好的因果解释性。理论推导和实验结果表明,该方法不仅能获得比传统方法更精确的预测效果,而且减少了参与运算的变量时间序列。 Time series data contains inherent temporal ordering. Traditional prediction methods for multivariate time series do not consider the influence of their historical observations. In this paper, we propose a multivariate time series prediction model which is based on Granger causality mining. By selecting effective cause variables and adding their lagged observations, the model improves the prediction of target time series when using support vector-regression. Meanwhile it provides a good interpretable causal-effect relationship as well. Theoretical inference and experimental results demonstrate that our method not only achieves better prediction effects than the traditional methods, but also reduces the number of variable time series involved in the computation.
出处 《计算机应用与软件》 CSCD 2015年第11期154-156,280,共4页 Computer Applications and Software
基金 国家自然科学基金项目(31171456)
关键词 多变量时间序列数据预测 GRANGER因果关系 滞后观测期 支持向量回归 Multivariate time series data Prediction Granger causality Lagged observations Support vector regression
  • 相关文献

参考文献12

  • 1Ratanamahatana C A, Lin J, Gunopulos D, et al. Mining time series da- ta, Chapter of Data Mining and Knowledge Discovery Handbook [ M ]. Springer US,2010.
  • 2金桃,岳敏,穆进超,宋伟国,何艳珊,陈毅.基于SVM的多变量股市时间序列预测研究[J].计算机应用与软件,2010,27(6):191-194. 被引量:6
  • 3雷绍兰,孙才新,周湶,张晓星.电力短期负荷的多变量时间序列线性回归预测方法研究[J].中国电机工程学报,2006,26(2):25-29. 被引量:93
  • 4Lu C J, Lee T S, Chiu C C. Financial time series forecasting using inde- pendent component analysis and support vector regression[ J ]. Decision Support Systems ,2009,47 (2) : 115 - 125.
  • 5陈涛.多变量时间序列的重构与预测方法[J].统计与决策,2009,25(14):31-33. 被引量:7
  • 6Yuan C, Zhang X, Xu S. Partial mutual information for input selection of time series prediction[ C ]//Proceedings of the Chinese Control and Decision Conferences,2011:2010 - 2014.
  • 7Shibuya T, Harada T, Kuniyoshi Y. Causality quantification and its ap- plications : structuring and modeling of multivariate time series [ C ]// Prec. of ACM International Conference on Knowledge Discovery and Data Mining. ACM Press ,2009:787 - 796.
  • 8Granger C W J. Investigating causal relations by econometric models and cross-spectral methods [ J]. Econometrica, 1969, 37 (3) : 424 -438.
  • 9周建,李子奈.Granger因果关系检验的适用性[J].清华大学学报(自然科学版),2004,44(3):358-361. 被引量:126
  • 10Sapankevych N I, Sankar R. Time series prediction using support vector machines : a survey [ J ]. Computational Intelligence Magazine, IEEE, 2009,4(2) :24-38.

二级参考文献44

共引文献228

同被引文献16

引证文献2

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部