期刊文献+

基于多特征融合的人体行为识别 被引量:6

HUMAN ACTION RECOGNITION BASED ON MULTI-FEATURES FUSION
下载PDF
导出
摘要 为了提高视频序列中人体行为的识别率和增强在复杂环境下的适用性,通过选取人体行为区分度较高的运动方向特征、形状特征和光流变化特征进行行为描述,提出一种基于运动方向直方图(MOH)特征、2D-SIFT特征和光流方向直方图(HOOF)特征相结合的人体行为识别方法。改进运动方向直方图特征,使其在有符号梯度空间下对人体全局运动方向具有更为鲁棒的表示。使用视觉词袋模型既解决了不同动作提取的兴趣点点数不同的问题,又实现了局部特征的有效融合。实验在Weizmann数据库和KTH数据库上识别率分别高达97.83%和91.38%,并具有较好的鲁棒性。 In order to improve the human actions' recognition rate in video sequence and enhance the applicability in complex environment, by selecting the features of higher differentiation in regard to human actions such as motion orientation, shape and optical flow change for representing the actions, we proposed a new human actions recognition algorithm which is based on the combination of motion orientation histograms (MOH) feature, 2D-Sift feature and histograms of oriented optical flow (HOOF) feature. The MOH feature was refined and was made to have more robust representation on body' s global motion direction in symbol gradient space. We used visual bag-of-word model to have solved the problem of various numbers of interest points extracted from different actions while achieved effective fusion of local features. Experiments performed on Weizmann and KTH databases showed that this algorithm had high recognition rate up to 97.83% and 91.38% and had better robustness as well.
出处 《计算机应用与软件》 CSCD 2015年第11期171-175,共5页 Computer Applications and Software
基金 陕西省工业攻关计划项目(2011K09-36) 陕西省教育厅科研计划项目(12JK0528) 陕西省科技攻关计划项目(2012K06-16)
关键词 行为识别 MOH特征 2D—SIFT特征 HOOF特征 视觉词袋模型 Action recognition MOH feature 2D-SIFT feature HOOF feature Visual bag-of-word model
  • 相关文献

参考文献13

  • 1孙倩茹,王文敏,刘宏.视频序列的人体运动描述方法综述[J].智能系统学报,2013,8(3):189-198. 被引量:5
  • 2叶芳芳,许力,杜鉴豪,杨洁.以头部为基准的人体轮廓模型[J].浙江大学学报(工学版),2011,45(7):1175-1180. 被引量:3
  • 3Fathi A, Mori G. Action recognition by learning mid-level motion fea- tures [ C ]/Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. EEE ,2008 : 1 - 8.
  • 4Yuan C,Li X,Hu W,et al. 3D R transform on spatio-temporal interest points for action recognition [ C ]//Computer Vision and Pattern Recog- nition (CVPR),2013 IEEE Conference on. IEEE,2013:724-730.
  • 5Zhang Z, Liu J. Reeognizing human action and identity based on affine- SIFT[ C ]//Electrical & Electronics Engineering ( EEESYM ), 2012 IEEE Symposium on. IEEE,2012:216 - 219.
  • 6李敏,刘恒.基于三维人体语义模型的人行为自然语言描述[J].计算机应用与软件,2014,31(2):177-181. 被引量:3
  • 7Qin Y H, Li H L, Liu G H, et al. Human action recognition using PEM histogram[ C ]//Computational Problem-Solving ( ICCP ), 2010 Inter- national Conference on. IEEE ,2010:323 - 325.
  • 8Satpathy A, Jiang X, Eng H L. Extended histogram of gradients with asymmetric principal component and discriminant analyses for human detection [ C ]//Computer and Robot Vision ( CRV ), 2011 Canadian Conference on. IEEE ,2011:64 - 71.
  • 9Phung S L, Bouzerdoum A. Detecting people in images : An edge density approach [ J ]. Faculty of Informatics-Papers, 2007 : 517 - 523.
  • 10Csurka G, Dance C, Fan L, et al. Visual categorization with bags of key- points[ C ]//Workshop on statistical learning in computer vision, EC- CV.2004,1 (1 -22) :1 -2.

二级参考文献72

  • 1石跃祥,蔡自兴.图像语义的模型结构描述[J].计算机工程与应用,2004,40(20):44-46. 被引量:6
  • 2仝明磊,潘海朗,刘允才.利用卷积曲面模型的人体运动姿势估计[J].上海交通大学学报,2006,40(7):1122-1125. 被引量:2
  • 3李振波,李华.基于运动生物力学的三维人体运动模型[J].系统仿真学报,2006,18(10):2992-2994. 被引量:9
  • 4WANG L, HU W M, TAN T N. Recent developments in human motion analysis[J].Pattern Recognition, 2003, 36(3): 585-601.
  • 5MOESLUND T, HILTON A, KRUGER V. A survey of advances in vision based human motion capture and analysis [J]. Computer Vision and Image Understanding, 2006, 104(2/3): 90-126.
  • 6FUJIYOSHI H, LIPTON A J. Real-time human motion analysis by image skeletonization [C] // Proceedings of the 4th IEEE Workshop on Applications of Computer Vision. Princeton: IEEE, 1998:15-21.
  • 7CHEN H S, CHEN H T, CHEN Y W, et al. Human action recognition using Star skeleton [C]// Proceeding of 4th ACM International Workshop on Video Surveillance and Sensor Networks. New York: ACM, 2006 : 171 - 178.
  • 8CHUN S, HONG K, JUNG K. 3D Star skeleton for fast human posture representation [C]// Proceeding of World Academy of Science, Engineering and Technology. Auckland: WASET, 2008: 273-282.
  • 9YU E, AGGARWAI. J K. Detection of fence climbing from monocular video [C]// 18th International Conference on Pattern Recognition. HongKong: IEEE, 2006;375 -378.
  • 10SCH1NDLER K, VAN GOOL L. Action snippets: how many frames does human action recognition requires'? [C]//Computer Vision and Pattern Recognition(CVPR). Anchorage, AK: IEEE, 2008.

共引文献8

同被引文献36

  • 1LI H P,ZHANG F,ZHANG S W.Multi-feature hierarchical topic models for human behavior recognition[J/OL].Science China Information Sciences,2014,57(9):1-15[2016-03-10].http://dx.doi.org/10.1007/s11432-013-4794-9.
  • 2SONG W,LIU N,YANG G.A Novel Human Action Recognition Algorithm Based on Decision Level Multi-Feature Fusion[J/OL].China Communications,2015(S2):93-102[2016-03-10].http://en.cnki.com.cn/Article_en/CJFDTotal-ZGTO2015S2012.htm.
  • 3CHEN Y Q,ZHAO Z T,WANG S Q,et al.Extreme Learning Machine based device displacement free activity recognition model[J/OL].Soft Computing,2012,16(9):1617-1625[2016-03-20].http://dx.doi.org/10.1007/s00500-012-0822-8.
  • 4何卫华.人体行为识别关键技术研究[D/OL].重庆:重庆大学,2012:3-134[2016-03-20].http://cdmd.cnki.com.cn/Article/CDMD-10611-1012047169.htm.
  • 5YANG J,WANG S,CHEN N,et al.Wearable accelerometer based extendable activity recognition system[C/OL]//2010IEEE International Conference on Robotics and Automation(ICRA),Anchorage,AK:IEEE,2010:3641-3647[2016-03-20].http://dx.doi.org/10.1109/ROBOT.2010.5509783.
  • 6徐光祐,曹媛媛.动作识别与行为理解综述[J].中国图象图形学报,2009,14(2):189-195. 被引量:50
  • 7汪力,叶桦,夏良正.基于半马尔可夫和Large-margin的动作识别[J].中国图象图形学报,2009,14(11):2304-2310. 被引量:3
  • 8宁忠磊,王宏琦,张正.一种基于协方差矩阵的自动目标检测方法[J].中国科学院研究生院学报,2010,27(3):370-375. 被引量:4
  • 9阮涛涛,姚明海,瞿心昱,楼中望.基于视觉的人体运动分析综述[J].计算机系统应用,2011,20(2):245-254. 被引量:26
  • 10胡琼,秦磊,黄庆明.基于视觉的人体动作识别综述[J].计算机学报,2013,36(12):2512-2524. 被引量:123

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部