期刊文献+

一种高分辨率SAR图像河流边界自动提取方法 被引量:5

AN AUTOMATIC EXTRACTION METHOD FOR RIVER BOUNDARIES IN HIGH RESOLUTION SAR IMAGE
下载PDF
导出
摘要 针对经典阈值分割方法在高分辨率合成孔径雷达SAR(Synthetic Aperture Radar)河流边界提取中存在很高的噪声斑点和在高山区域SAR图像存在大面积的阴影的问题,提出一种新颖的基于高分辨率SAR强度图像的河流边界自动提取方法。该方法核心在于结合河流的局部连接特性和基于变化水平集框架中的区域活动轮廓模型(ACM),以区分河流区域和背景。实验结果证实了该方法的有效性和稳健性。 Using classic thresholding method to extract river boundaries in high resolution synthetic aperture radar (SAR) image has the problems of high speckle noise and the large area shadows occurred in SAR images of mountains region. In order to solve the problems, in this paper we presented a novel approach for automatic river boundaries extraction which is based on high resolution SAR intensity image. The key of our approach lies on the combination of local connectivity feature of the river and the regional active contours model (ACM) based on variational level set framework, it is for differentiating the river field from the background. Experimental results prove the effectiveness and robustness of the appraoch,
作者 魏丹 赵新强
出处 《计算机应用与软件》 CSCD 2015年第11期213-216,共4页 Computer Applications and Software
关键词 合成孔径雷达(SAR) 水域提取局部连接性 活动轮廓模型(ACM) Synthetic aperture radar (SAR) Waters extraction Local connectivity Active contours model (ACM)
  • 相关文献

参考文献13

  • 1Brink A D, Pendock N E. Minimum cross-entropy threshold selection [ J ]. Pattern Recognition, 1996,29 ( 1 ) : 179 - 188.
  • 2Tian Y, Chen X W, Luo P, et al. Beijiang water body information ex- traction based on ENVISAT-ASAR [ C ]//Proc. Second International Workshop on Earth Observation and Remote Sensing Applications (EORSA) ,2012:273 - 277.
  • 3Zhang Lili Zhang Yanning Wang Min Li Ying.ADAPTIVE RIVER SEGMENTATION IN SAR IMAGES[J].Journal of Electronics(China),2009,26(4):438-442. 被引量:4
  • 4Shao Y,Wang S A ,Tian W,et al. Fast extracting and change detection of dammed lakes using high-resolution SAR images: a case study of TangJiaShan dammed lake [ C]//Proc. International Geoscience and Remote Sensing Symposium ( IGARSS' 09 ) ,2009:549 - 352.
  • 5Wang X L,Li C S,Wu R B. River boundaries extraction in mountain areas for SAR images with fusing GIS information[ J]. IEEE CIE Inter- national Conference on radar,2011 : 1586 - 1588.
  • 6Grosdidier S,Valero S,Chanussot J,et al. River network detection on simulated SWOT images based on curvilinear denoising and morpholog- ical detection[ C ]//Proc. International Geoscience and Remote Sens- ing Symposium ( IGA RSS' 12 ) ,2012 : 5454 - 5457.
  • 7Horritt M S,Mason D C,Cobby D M,et al. Waterline mapping in floo- ded vegetation from airborne SAR imagery[ J ]. Remote Sensing of En- vironment,2003,85:271 - 281.
  • 8Li C M, Kao C Y, Gore J C, et al. Minimization of region-scalable fitting energy for image segmentation [ J ]. 1EEE Transactions on Image Pro- cessing,2008,17 ( 10 ) : 1940 - 1949.
  • 9Wang L,He L,Mishra A,et al. Active contours driven by lal Gaussi- an distribution fitting energy [ M ]. Signal Processing, 2009,89 : 2435 - 2447.
  • 10Zhang K H ,Zhang L,Song H H ,et al. Active contours with selective lo- cal or global segmentation: A new formulation and level set method [ J ]. Image and Vision Computing, 2010,28:668 - 676.

二级参考文献10

共引文献3

同被引文献38

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部