期刊文献+

基于混合粒子群分布估计算法的Hadoop任务调度优化策略 被引量:1

HADOOP TASK SCHEDULING OPTIMISATION STRATEGY BASED ON HYBRID PARTICLE SWARM OPTIMISATION-ESTIMATION OF DISTRIBUTION ALGORITHM
下载PDF
导出
摘要 在一个异构的网格环境下,Hadoop异构任务调度的目的是有效地利用资源和共享可用的资源之间的负载,这样的任务调度问题是NP-Hard问题。提出一种基于混合粒子群分布估计算法(HPSO-EDA)的任务分配策略。新的HPSO-EDA引入分布估计算法的建立概率模型和随机抽样操作来替代速度和位置的更新操作来引导最优解的进化,提高算法的收敛速度,防止算法陷入局部最优化解。通过实验仿真表明:HPSO-EDA比传统PSO和EDA能在更短的时间里产生更好的结果。 In a heterogeneous grid environment, the ~urpose of Hadoop heterogeneous task scheduling is to effectively use resources and to share the load among available resources, such task scheduling problem is the NP-hard problem. This paper proposes a task allocation strategy which is based on hybrid particle swarm optimisation-estimation of distribution algorithm (HPSO-EDA). The new HPSO-EDA introduces the probability model building and random sampling operation of EDA to replace the velocity and position update operations to guide the evolution of optimal solution, it is in order to improve the convergence rate of the algorithm and prevent the algorithm falling into local optimal solution. It is demonstrated by the experimental simulation that the HPSO-EDA algorithm proposed in the paper can generate better results in shorter time than the traditional PSO and EDA algorithms.
出处 《计算机应用与软件》 CSCD 2015年第11期261-263,272,共4页 Computer Applications and Software
基金 国家高技术研究发展计划重大项目(2013AA01A212) 国家科技支撑计划课题(2012BAH27F05) 广东省自然科学基金团队研究项目(S2012030006242)
关键词 HADOOP 分布估计 粒子群 MAPREDUCE Hadoop Estimation of distribution Particle swarm optimisation MapReduce
  • 相关文献

参考文献10

  • 1覃雄派,王会举,杜小勇,王珊.大数据分析——RDBMS与MapReduce的竞争与共生[J].软件学报,2012,23(1):32-45. 被引量:386
  • 2ChuckLam.Hadoop实战[M].北京:人民邮电出版社,2012.
  • 3王珊,王会举,覃雄派,周烜.架构大数据:挑战、现状与展望[J].计算机学报,2011,34(10):1741-1752. 被引量:616
  • 4Jeffrey:Dean, Sanjay Ghemawat. MapReduce : simplified data process- ing on large clusters[J]. Communications of the ACM, 2008,51 ( 1 ) : 107 - 113.
  • 5Wang G Z, Salles M V, Sowell B, et al. Behavioral simulations in Ma- pReduce [ C] //PVLDB ,2010:952 - 963.
  • 6Kennedy J, Eberhart R C. Particle swarm Optimization[ C]//Proceed- ings of IEEE International Conference on Neural Networks, 1995:1942 - 1948.
  • 7Clerc M, Kennedy J. The particle swarm explosion, stability, and con- vergence in a multidimensional complex s/ace [ J ]. IEEE Trans. on Evolutionary Computation, 2002,6 ( 1 ) :58 - 73.
  • 8Eberhart R C, Shi Y. Comparing inertia weights and constriction fac- tors in particle swarm optimization[ C]//Proc. 2000 Congress Evolu- tionary. Computation. Piscataway, NJ : IEEE Press,2000:84 - 88.
  • 9Shapiro J L. Drift and scaling in estimation of distribution algorithms [J]. Evolutionary Computation, 2005,13( 1 ) :99 - 123.
  • 10ShihTang Lo, RueyMaw Chen, DerFang Shiau. Using Particle Swarm Optimization to Solve Resouree-constrained Scheduling Problems [ C ]//IEEE Conference on Soft Computing in Industrial Applications Muroran, Japan, 2008:87 -92.

二级参考文献124

  • 1[OL].<http://hadoop.apache.org.>.
  • 2WinterCorp: 2005 TopTen Program Summary. http:// www. wintercorp, com/WhitePapers/WC TopTenWP. pdf.
  • 3TDWI Checklist Report: Big Data Analytics. http://tdwi. org/research/2010/08/Big-Data-Analytics, aspx.
  • 4Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. SIGMOD Rec, 1997,26(1): 65-74.
  • 5Madden S, DeWitt D J, Stonebraker M. Database parallelism choices greatly impact scalability. DatabaseColumn Blog. http://www, databasecolumn, com/2007/10/database-parallelism-choices, html.
  • 6Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters//Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI ' 04). San Francisco, California, USA, 2004: 137-150.
  • 7DeWitt D J, Gerber R H, Graefe G, Heytens M L, Kumar K B, Muralikrishna M. GAMMA--A high performance dataflow database machine//Proceedings of the 12th International Conference on Very Large Data Bases (VLDB' 86). Kyoto, Japan, 1986:228-237.
  • 8Fushimi S, Kitsuregawa M, Tanaka H. An overview of the system software of a parallel relational database machine// Proceedings of the 12th International Conference on Very Large DataBases(VLDB'86). Kyoto, Japan, 1986:209-219.
  • 9Brewer E A. Towards robust distributed systems//Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing (PODC' 00). Portland, Oregon, USA, 2000:7.
  • 10http: //www. dbms2, com/2008/08/26/known-applications of mapreduce/.

共引文献903

同被引文献6

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部