期刊文献+

风电场风速数值预报的误差分析及订正 被引量:11

Error analysis and correction of wind speed numerical forecast at wind farm
下载PDF
导出
摘要 使用WRF模式对内蒙古某风电场区域内的2011年1—6月,50 m高度的风速进行了模拟,并结合实测风速对模拟结果进行了评估。在此基础上再利用自回归模型(AR模型)和持续法对WRF模式模拟结果进行了订正预报,订正结果表明:AR模型和持续法都能有效地减小WRF模式风速的模拟误差,AR模型订正效果优于持续法。为能对订正预报时效进行延长,提出了"假设观测值"概念。在AR模型的基础上建立一种新的订正模型称之为New AR模型。其订正预报结果表明:新模型能在12 h时效内,改善WRF模式风速模拟精度,其中6 h的改进效果较好。 The wind speed at 50 m at a wind farm of Inner Mongolia from January to June of 2011 was simulated by WRF(Weather Research and Forecasting) model, then the simulation results were e-valuated, combined with the observed wind speed. Furthermore, the wind speed was corrected by Auto-Regression(AR model) and Persistence. The results show that the mentioned above two methods can botheffectively reduce the simulation error, while the AR model performs better than the Persistence. In orderto extend the prediction period, a new revised model(New AR model) was established, based on theconcept of hypothetical observation. The correction forecasting results of the new model show that New ARmodel can improve the wind speed accuracy of WRF within 12 hours, especially within 6 hours.
出处 《气象科学》 北大核心 2015年第5期587-592,共6页 Journal of the Meteorological Sciences
基金 公益性行业(气象)科研专项(GYHY201206026) 江苏高校优势学科建设工程资助项目(PAPD)
关键词 风速 误差分析 订正预报 AR模型 持续法 WRF 内蒙古 Wind speed Error analysis Correction forecasting AR model Persistence WRF Inner Mongolia autonmous region
  • 相关文献

参考文献16

  • 1林万涛,王建州,张文煜,郭振海,迟德中,张宇.基于数值模拟和统计分析及智能优化的风速预报系统[J].气候与环境研究,2012,17(5):646-658. 被引量:9
  • 2姚传安,姬少龙,余泳昌.基于小波变换与Elman神经网络的短期风速组合预测[J].可再生能源,2012,30(8):42-45. 被引量:9
  • 3Alexiadisa M C, Dokopoulosa P S, Sahsamanoglou H S, et al. Short-term forecasting of wind speed and related electrical power. Solar Energy, 1998, 63(1) : 61-68.
  • 4Bossanyi E A. Short-term wind prediction using Kalman filters. Wind Engineering, 1985, 9(1) : 1-8.
  • 5Box G E P, Jenkins G M, Reinsel G C. Time series analysis : fore- casting and control. New York: John Wiley and Sons, 1976.
  • 6Pinson P, Siebert N, Kariniotakis G. Forecasting of regional wind generation by a dynamic fuzzy-neural networks based upscaling approach. Madrid, Spain: European Wind Energy Conference & Exhibition EWEC, 2003.
  • 7Barbounis T G, Theochairs J B, Alexiadis M C, et al. Long-term wind speed and power forecasting using local recurrent neural net- work models. IEEE Transactions on Energy Conversion, 2006, 21 (1) : 273-284.
  • 8Alexiadis M C, Dokopoulos P S, Sahsamanoglou H S. Wind speed and power forecasting based on spatial correlation models. IEEE Transactions on Energy Conversion, 1999, 14(3) : 836-842.
  • 9Mabel MC, Fernandez E. Analysis of wind power generation and prediction using ANN : A case study. Renewable Energy, 2008, 33(5) : 986-992.
  • 10龚强,袁国恩,张云秋,汪宏宇,于华深,蔺娜,白乐生.MM5模式在风能资源普查中的应用试验[J].资源科学,2006,28(1):145-150. 被引量:56

二级参考文献100

共引文献165

同被引文献140

引证文献11

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部