期刊文献+

Riesz空间分数阶扩散方程的分数阶中心差分加权离散格式

A Weighted Fractional Centered Difference Method for the Space Fractional Diffusion Equation Based on Riesz Derivatives
下载PDF
导出
摘要 在有限区域内考虑带齐次Dirichlet边界条件的Riesz空间分数阶扩散方程的初边值问题,利用分数阶中心差分对空间方向进行离散,在时间方向上用隐式和显式Euler格式的加权平均进行离散,构造了空间2阶、时间γ阶(γ=1,2)的全离散加权差分格式.利用函数的单调性证明了当加权因子0≤θ≤1/2时差分离散格式是无条件稳定的,当1/2<θ≤1时差分离散格式是条件稳定的,并给出了稳定的条件.证明了相应差分离散格式的收敛性.用实际数值算例验证了差分离散格式的有效性. In this paper,the space fractional diffusion equation with homogeneous Dirichlet boundary condition based on Riesz deriv- ative on a finite domain is considered. A weighted difference method with the numerical error O(h^2+τ^γ) (γ=1 or 2) is derived, when the fractional centered difference is applied to obtain the finite difference approach in space and the weighted average method based on the implicit and explicit Euler method is proposed in the time direction. The stability analysis of this scheme is carried out by means of the monotonicity of function. It is proved that the method is unconditionally stable for 0≤θ≤1/2,and conditionally stable for 1/2〈θ≤1,here θ is the weighting parameter subjected to 0≤θ≤1. The convergence of the corresponding difference method is proved. Finally, a numerical example with known exact solution is examined to verify the effectiveness of the method.
作者 邓娟 郑洲顺
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期858-864,共7页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(51174236) 国家重点基础研究发展计划(973计划)(2011CB606306) 中南大学研究生自由探索项目(2013zzts146)
关键词 Riesz导数 分数阶扩散方程 分数阶中心差分 稳定性分析 收敛性分析 Riesz fractional derivative fractional diffusion equation fractional centered difference stability analysis convergence analysis
  • 相关文献

参考文献18

  • 1Deng W. Finite element method for the space and time fractional Fokker-Planck equation[J]. SIAM Journal on Numerical Analysis, 2008,47 (1) : 204-226.
  • 2胡劲松,胡朝浪,郑茂波.广义对称正则长波方程的一个拟紧致守恒差分算法[J].四川大学学报(自然科学版),2010,47(2):221-227. 被引量:5
  • 3姚淑君,张永亮.广义Maxwell流体分数阶微分方程的数值解法[J].计算机工程与应用,2013,49(12):41-46. 被引量:4
  • 4杨晨航,刘发旺.分数阶Relaxation-Oscillation方程的一种分数阶预估-校正方法[J].厦门大学学报(自然科学版),2005,44(6):761-765. 被引量:5
  • 5章红梅,刘发旺.时间分数阶电报方程的一种解技巧[J].厦门大学学报(自然科学版),2007,46(1):10-13. 被引量:8
  • 6Gelhar L W,Wehy C, Rehfeldth K R. A critical review of data on field-scale dispersion in aquifers[J]. Water Re- sources Research, 1992,28(7) : 1955-1974.
  • 7Xu M,Tan W. Theory analysis of general second order a- nomalous diffusion velocity field, stress field and eddy field in liquid[J]. Science in China: Series A, 2001,31: 626-637.
  • 8Del-Castillo-Negrete D, Carreras B A, Lynch V E. Frac- tional diffusion in plasma turbulence[J]. Physics of Plas- mas,2004,11(8) :3854-3864.
  • 9Meerschaert M M,Tadjeran C. Finite difference approxi- mations for two-sided space-fractional partial differential equations[J]. Applied Numerical Mathematics, 2006,56 .. 80-90.
  • 10Tadjeran C, Meerschaert M M,Sehefller H P. A second- order accurate numerical approximation for the fractional diffusion equationEJ]. Journal of Computational Physics, 2006,213:205-213.

二级参考文献74

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部