摘要
为了解决网眼织物在织造过程中的实时检测问题,提出了一种基于频域滤波和区域生长法的瑕疵区域自适应分割方法。通过分析傅里叶变换后的功率谱获得网眼织物纱线分布特征后,通过设计滤波器自动滤除了与织物纹理背景相关的频率成分以削弱织物自身纱线分布结构对瑕疵检测精度的干扰。利用滤波后图像的灰度分布特点自适应地求取了分割参数,并使用区域生长法实现了对瑕疵区域的自动分割。利用对获得的二值图像进行形态学运算,得到了最终的瑕疵区域分割图像。实验结果表明,该算法能较准确地对瑕疵进行定位,瑕疵区域分割精度较高,自适应性和抗干扰能力较强,可以满足工业检测的要求。
Aiming at solving the problem of real-time defect detection of eyelet fabric,an adaptive image segmentation method based on the combination of frequency domain filtering and region growing method was proposed. The power spectrum obtained from Fourier transform was analyzed,and then the yarn distribution characteristics of eyelet fabric were obtained. Specific frequency component associated with background texture was filtered and its effect on detection precision was weakened. An adaptive region growing method was employed to extract defective regions from homogeneous background in the reconstructed image. Two main parameters were automatically determined by the gray level distribution of filtered image. Morphological operations were applied to the binary image to identify defects and eventually,yield noisefree images of the defects were obtained. The experimental results indicate that the adaptive and robust algorithm could localize the defect with high segmentation accuracy and therefore,it could meet the needs of industrial detection requirements.
出处
《机电工程》
CAS
2015年第11期1513-1518,共6页
Journal of Mechanical & Electrical Engineering
基金
国家自然科学基金资助项目(51005077)
国家教育部高学校博士学科点科研基金(博导类
20133514110008)
国家卫生和计划生育委员会科研基金(WKJ-FJ-27)
国家质检总局科技计划项目(2011QK216)
福建省杰出青年基金滚动项目(2014J07007)
福建省质量技术监督局科技项目(FJQI2013095
FJQI2013024)
福建省高等学校学科带头人培养计划(闽教人〔2013〕71号)
关键词
网眼布
瑕疵检测
机器视觉
自适应分割
频域滤波
eyelet fabric
defect detection
computer vision
adaptive image segmentation
frequency domain filtering