期刊文献+

基于区域生长法的自适应图像分割的网眼织物瑕疵检测 被引量:4

Defect detection of eyelet fabric using adaptive image segmentation based on region growing method
下载PDF
导出
摘要 为了解决网眼织物在织造过程中的实时检测问题,提出了一种基于频域滤波和区域生长法的瑕疵区域自适应分割方法。通过分析傅里叶变换后的功率谱获得网眼织物纱线分布特征后,通过设计滤波器自动滤除了与织物纹理背景相关的频率成分以削弱织物自身纱线分布结构对瑕疵检测精度的干扰。利用滤波后图像的灰度分布特点自适应地求取了分割参数,并使用区域生长法实现了对瑕疵区域的自动分割。利用对获得的二值图像进行形态学运算,得到了最终的瑕疵区域分割图像。实验结果表明,该算法能较准确地对瑕疵进行定位,瑕疵区域分割精度较高,自适应性和抗干扰能力较强,可以满足工业检测的要求。 Aiming at solving the problem of real-time defect detection of eyelet fabric,an adaptive image segmentation method based on the combination of frequency domain filtering and region growing method was proposed. The power spectrum obtained from Fourier transform was analyzed,and then the yarn distribution characteristics of eyelet fabric were obtained. Specific frequency component associated with background texture was filtered and its effect on detection precision was weakened. An adaptive region growing method was employed to extract defective regions from homogeneous background in the reconstructed image. Two main parameters were automatically determined by the gray level distribution of filtered image. Morphological operations were applied to the binary image to identify defects and eventually,yield noisefree images of the defects were obtained. The experimental results indicate that the adaptive and robust algorithm could localize the defect with high segmentation accuracy and therefore,it could meet the needs of industrial detection requirements.
出处 《机电工程》 CAS 2015年第11期1513-1518,共6页 Journal of Mechanical & Electrical Engineering
基金 国家自然科学基金资助项目(51005077) 国家教育部高学校博士学科点科研基金(博导类 20133514110008) 国家卫生和计划生育委员会科研基金(WKJ-FJ-27) 国家质检总局科技计划项目(2011QK216) 福建省杰出青年基金滚动项目(2014J07007) 福建省质量技术监督局科技项目(FJQI2013095 FJQI2013024) 福建省高等学校学科带头人培养计划(闽教人〔2013〕71号)
关键词 网眼布 瑕疵检测 机器视觉 自适应分割 频域滤波 eyelet fabric defect detection computer vision adaptive image segmentation frequency domain filtering
  • 相关文献

参考文献22

  • 1余桂平.经编网眼布及其应用[J].山东纺织经济,2014,31(8):14-16. 被引量:3
  • 2ZHONG S, Z/-IANG Q, YAO L, et al. Fabric defect detec- tion using wavelet-enhanced single-point photoelectric sens- ing system [J]. Applied Mechanics and Materials, 2012, 162:497-504.
  • 3张秋坤,钟舜聪.织物瑕疵的实时光电检测系统[J].机电工程,2011,28(11):1324-1326. 被引量:3
  • 4NGAN H YT, PANG G K H, YUNGN H C. Automated fabric defect detection-A review [ J ]. Image and Vision Computing, 2011,29:442 -458.
  • 5HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification [ J ]. IEEE Trans. Systems, Man and Cybernetics, 1973,3 (6) :610-621.
  • 6KASPARIS T, TZANNES N S, BASSIOUNI M, et al. Tex- ture description using fractal and energy features [ J ]. Com- puters & Electrical Engineering, 1995,21 ( 1 ) :21-32.
  • 7CHAN C H, PANG G K H. Fabric defect detection by Fou- rier analysis [ J ]. IEEE Trans. Industry Applications, 2000,36(5) : 1267-1276.
  • 8YANG X Z, PANG G K H, YUNG N H C. Discriminative fabric defect detection using adaptive wavelets [ J ]. Optical Engineering, 2002,41 ( 12 ) : 3116 -3126.
  • 9NAVARRO E R, MILLAN M S, PLADELLORENS J. De- tection of local defects in textile webs using Gabor filters [J]. Oi~tical Enaineerina. 1998.37 ( 8 ) :2297-2307.
  • 10SERAFIM A F L. Segmentation of Natural Images Based on Muhi-resolution Pyramids Linking of the Parameters of an Autoregressive Rotation Invmiant Model Application toLeather Defect Detection[ C]//Proc. IEEE llth IAPR Int' 1 Conf. Pattern Recognition. Conference C: Image, Speech & Signal Analysis. Hagne: Is. n. ] ,1992:41-44.

二级参考文献48

共引文献10

同被引文献26

  • 1李立轻,陈霞,黄秀宝.基于自适应正交小波的机织物密度自动检测的研究[J].东华大学学报(自然科学版),2005,31(1):63-65. 被引量:12
  • 2吴海虹,张明敏,潘志庚.织物图像的倾斜检测与纬纱密度识别[J].中国图象图形学报,2006,11(5):640-645. 被引量:16
  • 3何峰,李立轻,徐建明.基于自适应小波变换的织物密度测量[J].纺织学报,2007,28(2):32-35. 被引量:17
  • 4李文书,赵悦.数字图像处理算法及应用[M].北京:北京大学出版社,2012.
  • 5步红刚,黄秀宝,汪军.基于多分形特征参数的织物瑕疵检测[J].计算机工程与应用,2007,43(36):233-237. 被引量:13
  • 6NGAN H YT, PANGG K H, YUNG N H C. Automated fabric defect detection-A review [ J ]. Image and Vision Computing,2011,29 (7) :442-458.
  • 7KUO C F J, LEE C, TSAI C. Using a neural network to i- dentify fabric defects in dynamic cloth inspection [ J ]. Tex. tile Research Journal,2003,73 (3) :238-244.
  • 8YIN Y, ZHANG K, LU W. Textile Flaw Classification by Wavelet Reconstruction and BP Neural Network [ C ]//ISNN 2009(Part II, Lecture Notes in Computer Science). Wu- han: [ s. n. ] ,2009:694-701.
  • 9ZHOU Jian, WANG Jun. Fabric defect detection using a- daptive dictionaries [ J ]. Textile Research Journal, 2013, 83 ( 17 ) : 1846-1859.
  • 10GONZALES R C, WOODS R E. Digital Image Processing, Second Edition [ M ]. NJ : Pearson Education, Inc. ,2002.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部