期刊文献+

湍流风场与地震激励联合作用下的风力机结构动力学响应 被引量:36

Structural dynamic responses of a wind turbine under turbulent wind combined with seismic motion
下载PDF
导出
摘要 湍流风场与地震激励是影响风力机安全最主要的客观因素。为分析风力机在湍流风场及地震激励工况下结构动力学响应,以NREL实测数据为湍流风场数据源,结合相干湍流及地震激励,分别研究了多组工况下风轮、塔架和地基的动力学响应。结果表明:湍流风场对叶片载荷、叶尖位移和塔尖载荷影响较大,而地震激励影响可忽略不计;地震激励对地基载荷、地基位移和塔尖位移影响较大,而湍流风场影响可忽略不计;湍流风场与地震激励对塔基载荷均有一定影响,但后者影响更大,二者对风轮推力和功率影响均较大,且处于相同量级;相干湍流与地震激励对塔基载荷和塔尖位移影响相当,可达稳态风的2倍~15倍。 Turbulent wind field and seismic excitation are the leading objective factors affecting the operational safety of a wind turbine.In order to analyze the structural dynamic response of a wind turbine under turbulent wind and seismic motion,NREL measured data were taken as the source of turbulent wind field to combine coherent turbulent and seismic motion,the dynamic response of the rotor,tower and platform of the wind turbine were studied,respectively.The results showed that the turbulent wind has a bigger impact on loads and deflections of blades,and loads at the tower-tip, while the influence of seismic motion can be ignored;the seismic excitation has a larger impact on loads and displacements of platform,and deflection at the tower-tip,while the influence of turbulent wind can be ignored;the turbulent wind and seismic motion both have a certain impact on loads of tower-base,the coherent turbulent and seismic motion have the same impact on loads of tower-base and deflection of tower-tip,their amplitudes can reach 2-15 times of those under stationary wind.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第21期136-143,共8页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(E51176129) 上海市教育委员会科研创新(重点)项目(13ZZ120 13YZ066) 教育部高等学校博士学科点专项科研基金(博导类)项目(20123120110008) 上海市研究生创新基金项目(JWCXSL1402)
关键词 风力机 湍流风场 地震激励 结构动力学 wind turbine turbulent wind field seismic motion structural dynamic characteristics
  • 相关文献

参考文献24

  • 1GWEC. Global Wind Statistics 2013[C]// Brussels, Belgium, 2014.
  • 2Bhattacharya S, Nikitas N, Garnsey J, et al. Observed dynamic soil–structure interaction in scale testing of offshore wind turbine foundations [J]. Soil Dynamics and Earthquake Engineering, 2013, 54: 47~60.
  • 3DING Jie, CHEN Xinzhong. Assessing small failure probability by importance splitting method and its application to wind turbine extreme response prediction [J]. Engineering Structures, 2013, 54: 180-191.
  • 4王景全,陈政清.试析海上风机在强台风下叶片受损风险与对策——考察红海湾风电场的启示[J].中国工程科学,2010,12(11):32-34. 被引量:25
  • 5宋丽莉,毛慧琴,钱光明,刘爱君.热带气旋对风力发电的影响分析[J].太阳能学报,2006,27(9):961-965. 被引量:54
  • 6Bazeos N, Hatzigeorgiou G D, Hondros I D, et al. Static, seismic and stability analyses of a prototype wind turbine steel tower [J]. Engineering Structures, 2002, 24(8): 1015~1025.
  • 7Lavassas I, Nikolaidis G, Zervas P, et al. Analysis and design of the prototype of a steel 1-MW wind turbine tower [J] Engineering Structures, 2003,25(8): 1097~1106..
  • 8范洪军,金全洲,刘铁英,金家坤.风力机地震响应分析的研究现状与展望[J].结构工程师,2010,26(6):155-163. 被引量:7
  • 9Witcher D.Seismic Analysis of Wind Turbines in the Time Domain [J]. Wind Energy.2005,8 (1):81~91.
  • 10Prowell I, Elgamal A., Romanowitz H, et al. Earthquake response modeling for a parked and operating megawatt-scale wind turbine [R]. National Renewable Energy Laboratory, 2010, NREL/TP 5000-48242.

二级参考文献68

共引文献126

同被引文献167

引证文献36

二级引证文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部