期刊文献+

前寒武纪地球动力学(Ⅴ):板块构造起源 被引量:16

Precambrian geodynamics(Ⅴ):Origin of plate tectonics
下载PDF
导出
摘要 文中系统综述了板块构造启动时间的不同观点及其依据,并探讨了板块构造启动的三个必备条件:刚性岩石圈、俯冲作用、地幔对流循环的起源,进而探讨了前寒武纪俯冲作用、板块构造体制与现代俯冲作用、板块体制的差异。板块构造体制启动的三个缺一不可的条件:刚性、俯冲和地幔对流,直到27-21亿年期间才在全球不同地点同时满足。但现代板块构造体制起始的时间为10(或19)-8(或6)亿年,其标志性物质记录或识别标志依然是蛇绿岩建造、高压-超高压变质、岛弧型岩浆建造等。最后,系统描述了板块构造可能的启动机制和过程,为认识前板块构造和板块构造差异提供一个约束,也为推动地球动力学统一理论的思考和探索提供一些最新认识。 This paper summarizes different views and their corresponding evidence of the starting time of plate tectonics,and explores three requirements of starting plate tectonic system:rigid plate,subduction and mantle convection,and then further discusses the differences between the Precambrian subduction or plate tectonics regime and modern-style subduction or plate tectonics regime.The three requirements of starting plate tectonic system met at the same time until during 2.7-2.1Ga in different places around the world.But the modernstyle plate tectonic system and regime have a starting time of between 1.0(or 1.9)to 0.8(or 0.6)Ga;the remarked material records or identification markers are still ophiolite suites,HP-UHP metamorphic rocks,and arc magmatic rocks.At last,we describe possible starting mechanisms and processes of plate tectonics to provide a constraint for understanding the differences of pre-plate tectonics and plate tectonics,and to provide some latest insights for promoting thoughts and explorations of a unified theory of geodynamics as well.
出处 《地学前缘》 EI CAS CSCD 北大核心 2015年第6期65-76,共12页 Earth Science Frontiers
基金 国家自然科学基金杰出青年基金项目(41325009) 国家自然科学基金重大项目(41190072) 泰山学者特聘教授项目
关键词 前寒武纪 刚性岩石圈起源 俯冲起源 地幔对流起源 板块构造机制起源 Precambrian origin of rigid lithosphere origin of subduction origin of mantle circulation origin of plate tectonics regime
  • 相关文献

参考文献38

  • 1Kroner A. Precambrian plate tectonics[J]. Developments in Precambrian Geology, 1981, 4:57- 90.
  • 2Zhao G C, Cawood P A, Wilde S A, et al. Review of global 2. 1 - 1.8 Ga orogens: Implications for a Pre-Rodinia super continent[J]. Earth-Science Reviews, 200, 59: 125-162.
  • 3Ernst R E, Wingate M T D, Buchan K L, et al. Global re- cord of 1600 - 700 Ma Large Igneous Provinces (LIPs) : Im- plications for the reconstruction of the proposed Nuna (Co-lumbia) and Rodinia supercontinents[J]. Precambrian Re- search, 2008, 160(1/2): 159- 178.
  • 4Abbott D, Burgess L, Longhi J, et al. An empirical thermal history of the Earth's upper mantle[J]. Journal of Geophysi- cal Research, 1994, 99: 13835-13850.
  • 5Abbott D, Drury R, Smith W H F. Flat to steep transition in subduction style[J]. Geology, 1994, 22: 937-940.
  • 6Komiya T, Maruyama S, Masuda T, et al. Plate tectonics at 3. 8 - 3.7 Ga: Field evidence from the Isua aecretionary com- plex, Southern West Greenland[J]. Journal of Geology, 1999, 107: 515-554.
  • 7Cawood P A, Kroener A, Pisarevsky S. Precambrian plate tectonics: Criteria and evidence[J]. GSA Today, 2006, 16 (7) : 4- 11.
  • 8Laurent O, Martin H, Moyen J F, et al. The diversity and e volution of late-Archean granitoids: Evidence for the onset of "modern-style" plate tectonics between 3.0 and 2. 5 Ga[J]. Lithos, 2014, 205: 208-235.
  • 9Gerya T. Precambrian geodynamics: Concepts and models [J]. Gondwana Research, 2014, 25: 442- 463.
  • 10Condie K C. Earth as an Evolving Planetary System[M]. 2nd ed. Amsterdam: Academic Press, 2011:1-574.

二级参考文献119

  • 1Agashev A M, Ionov D A, Pokhilenko N P, et al. 2013. Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos, 160-161: 201-215.
  • 2Artemieva I M. 2003. Lithospheric structure, composition, and thermal regime of the East European Craton: Implications for the subsidence of the Russian platform. Earth Planet Sci Lett, 213: 421-446.
  • 3Arzamastsev A A, Bea F, Glaznev V N, et al. 2001. Kola alkaline province in the Palaeozoic: Evaluation of primary mantle magma composition and magma generation conditions. Russ J Earth Sci, 3: 1-32.
  • 4Ashchepkov I V, Pokhilenko N P, Vladykin N V, et al. 2010. Structure and evolution of the lithospheric mantle beneath Siberian Craton, thermobarometric study. Tectonophysics, 485: 17-41.
  • 5Basu A R, Poreda R J, Renne P R, et al. 1995. High-3He plume origin and temporal-spatial evolution of the Siberian flood basalts. Science, 269: 822-825.
  • 6Begg G C, Griffin W L, Natapov L M, et al. 2009. The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution. Geosphere, 5: 23-50.
  • 7Bird P. 1979. Continental delamination and the Colorado Plateau. J Geophys Res, 84: 7561-7571.
  • 8Bleeker W. 2003. The late Archean record: A puzzle in ca. 35 pieces. Lithos, 71: 99-134.
  • 9Boyd F R. 1984. Siberian geotherm based on lherzolite xenoliths from the Udachnaya kimberlite, USSR. Geology, 12: 528-530.
  • 10Boyd F R, Pokhilenko N P, Pearson D G, et al. 1997. Composition of the Siberian cratonic mantle: Evidence from Udachnaya peridotite xenoliths. Contrib Mineral Petrol, 128: 228-246.

共引文献65

同被引文献368

引证文献16

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部