期刊文献+

Hubbard模型中的相位弦效应与交互Chern-Simons理论 被引量:1

Phase string effect and mutual Chern-Simons theory of Hubbard model
下载PDF
导出
摘要 费米子符号在费米液体理论中至关重要.然而,在Mott绝缘体中,很强的电子Coulomb相互作用抑制了体系的电荷涨落并消除了电子交换带来的费米子符号问题.本文首先回顾二分晶格上Hubbard模型的相位弦理论,从弱关联的费米液体到强关联的反铁磁Mott绝缘体的转变可以由此得到统一理解.在任意Coulomb作用强度U下,我们首先导出Hubbard模型的严格的符号结构.在小U极限下,它回到通常的费米子符号;在大U极限下,它给出了t-J模型的相位弦符号.在半满情形下,我们构造了一种电子分数化的表象,其中,电荷子与自旋子通过演生的交互Chern-Simons规范场相互耦合.由此导出的基态波函数拟设与低能有效理论可以定性刻画Hubbard模型的基态相图.在弱关联区域,费米液体的准粒子由电荷子与自旋子的束缚态构成,其长程相位相干性取决于背景自旋的关联性质.体系的Mott转变可以通过电荷子打开能隙或是通过自旋子玻色凝聚来实现. The fermion sign plays a dominant role in Fermi liquid theory. However, in Mott insulators, the strong Coulomb interaction suppresses the charge fluctuations and eliminates the fermion signs due to electron permutation. In this article, we first review the phase string theory of the Hubbard model for a bipartite lattice, which unifies the Fermi liquid at weak coupling and the antiferromagnetic Mott insulator at strong coupling. We first derive the exact sign structure of the Hubbard model for an arbitrary Coulomb interaction U. In small U limit, the conventional fermion sign is restored,while at large U limit, it leads to the phase string sign structure of the t-J model. For half filling, we construct an electron fractionalization representation, in which chargons and spinons are coupled to each other via emergent mutual ChernSimons gauge fields. The corresponding ground state ansatz and low energy effective theory capture the ground state phase diagram of the Hubbard model qualitatively. For weak coupling regime, the Fermi liquid quasiparticle is formed by the bound state of a chargon and a spinon, and the long range phase coherence is determined by the background spin correlation. The Mott transition can be realized either by forming the chargon gap or by condensing the background spinons.
作者 张龙 翁征宇
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第21期9-23,共15页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2010CB923003)资助的课题~~
关键词 HUBBARD模型 Mott转变 相图 符号结构 Hubbard model Mott transition phase diagram sign structure
  • 相关文献

参考文献49

  • 1Mott N F 1949 Proc. Phys. Soc. A 62 416.
  • 2Hubbard J 1963 Proc. R. Soc. A Math. Phys. Eng. Sci. 276 238.
  • 3Roth W 1958 Phys. Rev. 110 1333.
  • 4Anderson P W 1987 Science 235 1196.
  • 5Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17.
  • 6Wu K, Weng Z Y, Zaanen J 2008 Phys. Rev. B 77 155102.
  • 7Sheng D N, Chen Y C, Weng Z Y 1996 Phys. Rev. Lett. 77 5102.
  • 8Weng Z Y, Sheng D N, Chen Y C, Ting C S 1997 Phys. Rev. B 55 3894.
  • 9Weng Z Y 2011 New J. Phys. 13 103039.
  • 10Arovas D P, Auerbach A 1988 Phys. Rev. B 38 316.

同被引文献18

  • 1HUBBARD J.Electron correlations in narrow energy bands[J].Proc Roy Soc 1963,276(1365):238-257.
  • 2李正中.固体理论[M].北京:高等教育出版社,2006.
  • 3SACHDEV S.Quantum phase transitions[M].Oxford:Cambridge University Press,2011.
  • 4AFFLECK I,MARSTON J B.Large n limit of the Heisenberg-Hubbard model:Implications for high-Tc superconductors[J].Phys Rev B,1988,37(7):3774-3777.
  • 5GEORGES A,KOTLIAR G.Hubbard model in infinite dimensions[J].Phys Rev B,1992,45(12):6479-6483.
  • 6MURMANN S,BERGSCHNEIDER A,KLINKHAMER V M,et al.Two fermions in a double well:Exploring a fundamental building block of the Hubbard model[J].Phys Rev Letts,2015,114:Art 080402,5pp.
  • 7JOHNSON T H,YUAN Y,BAO W,et al.Hubbard model for atomic impurities bound by the vortex lattice of a rotating Bose-Einstein condensate[J].Phys Rev Letts,2016,116:Art 240402,5pp.
  • 8HART R A,DUARTE P M,YANG T L,et al.Observation of anti ferromagnetic correlations in the Hubbard model with ultracold atoms[J].Nature,2015,519(7542):211-214.
  • 9FISHER M P,WEICHMAN P B,GRINSTEIN G,et al.Boson localization and the superfluid-insulator transition[J].Phys Rev B,1989,40(1):546-570.
  • 10JAKSCH D,BRUDER C,CIRAC J I,et al.Cold bosonic atoms in optical lattices[J].Phys Rev Letts,1998,81(15):3108-3111.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部