期刊文献+

界面氢键对受限水结构和动态特性的影响

Effect of interfacial hydrogen bonds on the structure and dynamics of confined water
下载PDF
导出
摘要 应用反应力场分子动力学方法,模拟了水限制在全羟基化二氧化硅晶体表面间的弛豫过程,研究了基底表面与水形成的界面氢键,及其对受限水结构和动态特性行为的影响.当基底表面硅醇固定时,靠近基底表面水分子中的氧原子与基底表面的氢原子形成强氢键,这使得靠近表面水分子中的氧原子比对应的氢原子更靠近基底表面,从而水分子的偶极矩远离表面.当基底表面硅醇可动时,靠近基底表面水分子与基底表面原子形成两种强氢键,一种是水分子中的氧原子与表面的氢原子形成的强氢键,数量较少,另一种是水分子中的氢原子与表面的氧原子形成的强氢键,数量较多,这使得靠近表面水分子中的氢原子比对应的氧原子更靠近表面,从而水分子的偶极矩指向表面.在相同几何间距下,当基底表面硅醇可动时,表面的活动性使得几何限制作用减弱,导致了受限水分层现象没有固定表面限制下的明显.此外,固定表面比可动表面与水形成的界面氢键作用较强,数量较多,导致了可动表面限制下水的运动更为剧烈. Reactive molecular dynamics(MD) is used to simulate the equilibrium process of water confined between two fully hydroxylated α-quartz(001) surfaces with separation distances from 7 to 20 ?. Effect of different patterns of interfacial hydrogen bonds on the structure and dynamics of confined water is investigated. Density profiles, radial distribution functions, number of interfacial hydrogen bonds, and mean square displacements are calculated. The α-quartz(001)surface is cut from an α-quartz crystal at a certain depth to construct a surface with geminal silanols after being fully hydroxylated. The silanol groups on the surface are treated in two different ways in the MD simulations. One of the silanol groups are treated as to be fixed, and the other one is treated as no constraint for the movement of surface silanols. Our results show that different patterns of hydrogen bonds are formed at the interface between Si O2 surface and water. For the fixed silanol surface there is one type of strong hydrogen bonds interacting between the oxygen atoms of water and the hydrogen atoms of surface silanols, leading to the dipole moment of water molecules pointing out from the surface. For the movable silanol surface there are two types of strong hydrogen bonds formed at the interface. One is between the oxygen atoms of water and the hydrogen atoms of surface silanols, and the other is between the oxygen atoms of surface silanols and the hydrogen atoms of water. The number of hydrogen bonds of the first type is much less than those of the second type, leading to the dipole moment of water molecules pointing to the surface. Moreover, the total number of interfacial hydrogen bonds formed on the fixed silanol surfaces is larger than that on the movable silanol surfaces. The density profiles of the confined water indicate the formation of a strong layering of water in the vicinity of the fixed silanol surface, and the water layer is also more ordered with an ice-like structure, as compared with a dense water layer with a liquid-like structure in the case of movable silanol surfaces. Thus the mean square displacements of confined water show that, as compared with interfacial hydrogen bonds formed on the fixed silanol surfaces, the weaker and the lesser interfacial hydrogen bonds formed on the movable silanol surfaces may be responsible for more intense movement of confined water between the movable silanol surfaces. Our simulation suggests that the different pattern of interfacial hydrogen bonds could signifiantly affect the structure and dynamic behaviors of the confined water between two fully hydroxylated silica surfaces.
作者 王明 段芳莉
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第21期432-439,共8页 Acta Physica Sinica
基金 中央高校基本科研业务费(批准号:CDJZR12248801)资助的课题~~
关键词 受限水 界面氢键 二氧化硅晶体 分子动力学模拟 confined water interfacial hydrogen bonds quartz crystal molecular dynamics simulation
  • 相关文献

参考文献26

  • 1He J X, Lu H J, Liu Y, Wu F M, Nie X C, Zhou X Y, Chen Y Y 2012 Chin. Phys. B 21 054703.
  • 2Stanley H E 2009 Z. Phys. Chem. 223 939.
  • 3Verdaguer A, Sacha G M, Bluhm H, Salmeron M 2006 Chem. Rev. 106 1478.
  • 4Alba S C, Coasne B, Dosseh G, Dudziak G, Gubbins K E, Radhakrishnan R, Sliwinska B M 2006 J. Phys-Condens. Mat. 18 R15.
  • 5Vogler E A 1998 Adv. Colloid Interface Sci. 74 69.
  • 6Wang Y, Zhao Y J, Huang J P 2012 Chin. Phys. B 21 076102.
  • 7Papakonstantinou P, Vainos N A, Fotakis C 1999 Appl. Surf. Sci. 151 159.
  • 8Asay D B, Kim S H 2006 J. Chem. Phys. 124 174712.
  • 9Zamora R R M, Sanchez C M, Freire F L, Prioli R 2004 Phys. Status Solidi A 201 850.
  • 10Sirghi L 2003 Appl. Phys. Lett. 82 3755.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部