摘要
本文利用 Knaster不动点定理,Levi引理,给出具有变系数 P(t)的 2n+ 1阶中立型微分 方程[x(t)-p(t)_x(t-2)]^(2n+1)+f(t,x(t-τ_1(t)),…,x(t-τ_m(t))=0正解存在的几个充分 条件.本文结果部分地回答了文21提出的问题.
In this paper, by Using the Knaster fixed Point theorem the levi lemma, we have given come sufficient of existence of positive solutions for 2n + 1 order neutral differential equations With n is a nonnegtive ingeger and P(t) is a voriable Coefficient. The results obtained answer partially an open problen in [1].
关键词
变系数
2n+1阶中立型微分方程
正解的存在性
Variable Coefficient
2n + 1 Order neutral differential equations
existence of positive solutions