期刊文献+

基于二端口网络模型的PI-阻尼控制研究

Research on the PI-Damping Control Based on the 2-Port Circuit Model
下载PDF
导出
摘要 针对临床康复训练运动平稳平滑特性要求,在传统的PI控制基础上,提出了PI-阻尼控制器设计方法。根据机器人和患肢的动力学模型,结合PI-阻尼控制设计架构,通过建立二端口网络模型,从理论上对PI-阻尼控制的稳定性和平滑性进行了证明。通过2名健康受试者,在构建的WAM康复训练系统上进行了非平稳运动实验研究。实验结果表明,PI-阻尼控制较传统的PI控制具有更好的运动控制性能,能够很好地应对外界突发扰动,有效实现稳定平滑的训练运动。 A PI-dumping controller design method based on the traditional PI controller is proposed to meet the special requirements on the stability and smoothness of the clinically rehabilitation training. According to the dynamic models of the robot and the impaired limb, combined with the designed PI-damping con- troller, the stability and smoothness of the PI-damping control are proved in theroy using 2-port circuit model. The experiments of non-stationary training exercises with two helthy subjects are investigated on the WAM rehabilitation training system. The experimental results indicate that the H-damping control has better motion performances than the PI control in dealing with sudden disturbance and serving with stable and smooth training exercises.
出处 《常州大学学报(自然科学版)》 CAS 2015年第4期53-58,共6页 Journal of Changzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(61325018) 江苏省高校自然科学基金资助项目(14KJB510002) 常州大学人才引进基金资助项目(ZMF13020048)
关键词 康复机器人 训练运动 二端口网络 PI-阻尼控制 rehabilitation robot training motion 2-port circuit PI-damping control
  • 相关文献

参考文献11

  • 1BREWER L, HORGAN F, HICKY A, et al. Stroke rehabilita- tion recent advances and future therapies[J]. Q J Med, 2013, 106 11-25.
  • 2MICHAEL P B, BRUCE H D, JULIEN B. Recovery after Stroke IMp. London Cambridge University press, 2005:656-662.
  • 3KAHN L E, RYMER W Z, REINKENSMEYER D J. Adaptive assistance for guided force training in chronic stroke[C]. Pro- ceedings of the 26th annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco: In- stitute of Electrical and Electronics Engineers Inc, 2004: 2722-2725.
  • 4BOVOLENTAL F, SALE P. Robot-aided therapy for upper limbs in patients with stroke-related lesions Brief report of a clinical experience[J]. Journal of Neuroengineering and Rehabili- tation, 2011, 8(3): 412-420.
  • 5CULMER P R, JACKSON A E, MAKOWER S, et al. A control strategy for upper limb robotic rehabilitation with a dual robot system[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(4): 575-585.
  • 6SALE P, FRANCESCHINI M, WALDNER A, et al. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury[J]. European Journal of Physical and Rehabilitation Medicine, 2012, 48(1): 111-121.
  • 7ALEXANDRE D, SAID M, LISSAN A, et al. Control system design of a 3-DOF upper limbs rehabilitation robot[J].Computer Methods and Programs in Biomedicine, 2008, 89(2): 202-214.
  • 8NICOLA V, TOMMASO L, STEFANO R, et al. NEUROExos: A Powered Elbow Exoskeleton for Physical Reha- bilitation[J]. IEEE Transactions on Robotics, 2013, 29 ( I ).. 220-235.
  • 9WESTERVELD A J, AALDERINK B J, HAGEDOORN W, et al. A damper driven robotic end-point manipulator for func- tional rehabilitation exercises after stroke[J].IEEE Transactions on Bio-Medical Engineering, 2014, 61(10): 2646-2654.
  • 10ANDERSON R J, SPONG M W. Bilateral control of teleopera- tors with time delay [J]. IEEE Trans on Automatic control, 1989, 34(5): 494-501.

二级参考文献17

  • 1Laura M C, David J R. Review of control strategies for robotic movement training after neurologic injury[J]. Journal of Neuro- Engineering and Rehabilitation, 2009, 6: 20.
  • 2Choi Y, Gordon J, Kim D. An adaptive automated robotic task-practice system for rehabilitation of arm functions after stroke[J]. IEEE Transactions on Robotics, 2009, 25(3): 556- 568.
  • 3Adel O, Richard B, Olivier G, et al. Feedrate planning for machining with industrial six-axis robots[J]. Control Engineering Practice, 2010, 18(5): 471-482.
  • 4Wang C, Xu S. Lagrange fuzzy interpolating controlling and simulation on semi-active suspension of vehicle[C]//international Conference on Intelligent Computation Technology and Automation. Piscataway, NJ, USA: IEEE, 2009: 78-81.
  • 5Bai Y, Wang D L. On the comparison of trilinear, cubic spline, and fuzzy interpolation methods in the high-accuracy measurements[J]. 1EEE Transactions on Fuzzy Systems, 2010, 18(5): 1016-1022.
  • 6Guan Y S, Yokoi K, Stasse O, et al. On robotic trajectory planning using polynomial interpolations[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ, USA: IEEE, 2005: 111-116.
  • 7Tian L E Collins C. An effective robot trajectory planning method using a genetic algorithm[J]. Mechatronics, 2004, 14(5): 455-470.
  • 8Li T H, Su Y T, Lai S W, et al. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(3): 736-748.
  • 9Yi S Y. Reliable gait planning and control for miniaturized quadruped robot pet[J]. Mechatronics, 2010, 20(4): 485-495.
  • 10Harada K, Hattori S, Hirukawa H, et al. Two-stage time-parametedzed gait planning for humanoid robots[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(5): 694- 703.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部