期刊文献+

基于COA-EO混合算法的含DG的配电网Pareto最优规划 被引量:3

Pareto Optimal Planning Model of Distribution Network with DG Based on COA-EO Hybrid Algorithm
原文传递
导出
摘要 含DG的配电网规划是一种复杂的组合优化问题,随着智能配电网的发展以及波动性可再生能源的接入,对优化模型的效率提出了更高的要求。该文提出了基于混沌优化算法(chaos optimization algorithm,COA)和极值动力学优化算法(extreme dynamics optimization algorithm,EO)相互结合的多目标问题求解模型。通过算例验证,结果表明COA-EO优化算法同时利用COA算法和EO算法的优点,从而成功避免了各自缺陷,使得普通EO算法跳出局部最优,避免了算法的早熟现象,从而得到了全局最优结果。另外,为得到更好的多目标优化结果,引入Pareto最优解,并利用所提出的COA-EO算法求解Pareto最优解。计算结果亦表明COA-EO算法的优化性能优于EO算法、遗传(genetic algorithm,GA)算法、蚁群(ant colony optimization,ACO)算法、ACO-EO算法和GA-EO算法,说明COA-EO算法是解决含DG配电网规划问题的有效工具。 Distribution network planning with DG is a complex combinatorial optimization problem. Along with the development of smart distribution network and fluctuant renewable energy access,it puts forward higher requirements on the efficiency of optimization model. This paper proposed COA-EO algorithm which combined chaos optimization algorithm( COA) and extreme dynamics optimization algorithm( EO) to solve the multi-objective optimization problem. The example verification results showthat COA-EO optimization algorithm can take advantage of both COA and EO and manage to avoid the shortcomings,so that it can make ordinary EO escape from local optimal solution,avoid the premature phenomenon of the algorithm,and eventually obtain the globally optimal solution. In addition,in order to get a better multi-objective optimizationresult,this paper introduced the Pareto optimal solution,and used the proposed COA-EO algorithm to solve the Pareto optimal solution. The calculation results showthat the optimization performance of COA-EO algorithm is superior to EO,genetic algorithm( GA),ant colony optimization( ACO),ACO-EO algorithm and GA-EO algorithm,which indicates that COA-EO algorithm is effective for distribution network planning with DG.
出处 《电力建设》 北大核心 2015年第11期1-9,共9页 Electric Power Construction
基金 国家自然科学基金项目(51277067 71271082) 中央高校基本科研业务费专项资金资助(2015XS37) 国家软科学研究计划项目(2012GXS4B064)~~
关键词 配电网规划 分布式电源 可再生能源 COA-EO混合优化算法 PARETO最优解 distribution network planning distributed generation renewable energy COA-EO hybrid optimization algorithm Pareto optimal solution
  • 相关文献

参考文献7

二级参考文献108

共引文献557

同被引文献44

  • 1张李盈,范明天.配电网综合规划模型与算法的研究[J].中国电机工程学报,2004,24(6):59-64. 被引量:57
  • 2DIAF S, BELHAMEL M, HADDADI M. Technical and economic assessment of hybrid photovohaic/wind system with battery storage in Corsica island[J].Energy Policy, 2008, 36 (5) : 743-754.
  • 3ZHOU Wei, LOU Chengzhi, LI Zhoushi, et al. Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems[J]. Applied Energy,2010,87(2) :380-389.
  • 4BANOS R, MANZANO-AGUGLIARO F, MONTOYA F G, et al. Optimization methods applied to renewable and sustainable energy: A review[ J]. Renewable and Sustainable Energy Reviews, 2011, 15 (4) :1753-1766.
  • 5YANG Hongxing, ZHOU Wei, LU Lin, et al. Optimal sizing method for stand-alone hybrid solar wind system with LPSP technology by using genetic algorithm [ J]. Solar Energy, 2008, 82 (4) :354-367.
  • 6MAHESWARI K U, RAJA R M S. Optimal rescheduling of generators for congestion management by using godlike algorithm [ J ]. International Journal of Engineering Trends and Technology, 2014, 10(9) :435-440.
  • 7OLDENHUIS R P S, OLDENHUIS R P S. Trajectory optimization for a mission to the solar bow shock and minor planets [ J ]. Aerospace Engineering, 2010:86-107.
  • 8NARKHEDE M S, CHATFERJI S, GHOSH S. Comparative analysis of EV-MOGA and GODLIKE multi-objective evolutionary algorithms for risk based optimal power scheduling of a virtual power plant[ J]. Ictact Journal on Soft Computing, 2015, 5 (2) :917-924.
  • 9刘波,张焰,杨娜.改进的粒子群优化算法在分布式电源选址和定容中的应用[J].电工技术学报,2008,23(2):103-108. 被引量:130
  • 10孔涛,程浩忠,李钢,谢欢.配电网规划研究综述[J].电网技术,2009,33(19):92-99. 被引量:105

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部