期刊文献+

Dodd-Bullough-Mikhailov方程的对称、约化和精确解 被引量:1

Symmetry Reductions and Exact Solutions of Dodd-Bullough-Mikhailov Equation
下载PDF
导出
摘要 利用经典李群方法得到了Dodd-Bullough-Mikhailov(DBM)方程的对称、约化,通过解约化方程得到了该方程的一些行波解,并研究了DBM方程的守恒律. Using the classical Lie group method,We find the classical symmetry and reductions of the Dodd-Bullough-Mikhailov (DBM) equation. Many kinds of exact traveling wave solutions of the DBM equation are derived by solving the reduced equations. We also give the conservation laws of the DBM equation.
出处 《河北师范大学学报(自然科学版)》 CAS 2015年第6期468-472,共5页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金委员会-中国工程物理研究院联合基金(11076015) 聊城大学东昌学院课题(2013LG001)
关键词 李群方法 DBM方程 对称约化 精确解 守恒律 Lie group method Dodd-Bullough Mikhailov equation symmetry reduction exact solu-tions conservation laws
  • 相关文献

参考文献16

  • 1WAZWAZ A M.The Tanh Method for Travelling Wave Solution of Nonlinear Wave Equations[J].Appl Math Comput,2007,187:1131-1142.
  • 2FAN E G,ZHANG J.Applications of the Jacobi Elliptic Function Method to Special-type Nonlinear Equations[J].Phys Lett A,2002,305:383-392.
  • 3FU Z T,LIU S K,LIU S D,et al.New Jacobi Elliptic Function Expansion and New Periodic Solutions of Nonlinear Wave Equations[J].Phys Lett A,2001,290:72-76.
  • 4WANG M L.Exact Solutions of a Compound KdV-burgers Equation[J].Phys Lett A,1996,213:279-287.
  • 5WADATI M.Wave Propagation in Nonlinear Lattice I[J].Phys Soc Jpn,1975,38:673-680.
  • 6BASSOM A P,CLARKSON P A,HICKS A C.Backlund-transformations and Solution Hierarchies for the 4th Painleve Equation[J].Studies in Applied Mathematics,1995,95(1):1-71.
  • 7ABLOWITZ M J,SEGUR H.Solitons and Inverse Scattering Transform[M].Philadelphia:SIAM,1981.
  • 8LIU J,YANG K.The Extended F-expansion Method and Exact Solutions of Nonlinear PDEs[J].Chaos Soliton Fract,2004,22:111-121.
  • 9HIROTA R.Exact Solution of the KdV Equation for Multiple Collisions of Solitons[J].Phys Rev Lett,1971,27:1192-1194.
  • 10HE J H,WU X H.Exp-function Method for Nonlinear Wave Equation[J].Chaos Soliton Fract,2006,3:700-708.

二级参考文献15

  • 1董仲周,王玲.(2+1)维Boussinesq方程的对称、约化、群不变解及守恒律[J].聊城大学学报(自然科学版),2007,20(1):21-24. 被引量:14
  • 2于金倩,刘希强,王婷婷.(2+1)维Boiti-Leon-Pempinelli方程的精确解和守恒律[J].Appl Math Comput,2010,216(8):2293-2300.
  • 3WANG Mingliang, L1 Xiangzheng. The-expansion Method and Travelling Wave Solution of Nonlinear Evolution Equation in the Mathematical Physics[J]. Phy Lett A,2008,372:417-423.
  • 4HE Jihuan. New Periodic Solutions for Nonlinear Evolution Equations Using Exp-function Method [J]. Chaos Soliton Fract, 2007,34 : 1421-1429.
  • 5BAI Chenglin,BAI Chengjie,ZHAO Hong. A New Generalized Algebraic Method and Its Application in Nonlinear Evo- lution Equations with Variable Coefficients [J]. Naturforsch,2005,60:211-220.
  • 6CALOGERO F,DEGASPERIS A. Nonlinear Evolution Equations Solvable by the Inverse Spectral Transform I [J]. II Nuovo Cimento B, 1976,32 : 201-242.
  • 7ABAZARI R. The Solitary Wave Solutions of Zoomeron Equation [J]. Appl Math Sci,2011,5(59) :2943-2949.
  • 8MARWAN A, KAMEL A K. Mathematical Methods for a Reliable Treatment of the (2 + 1)-dimensional Zoomeron Equation[J]. Mathematical Sciences, 2012(6) : 11.
  • 9CHEN Yong, WANG Qi. A New General Algebraic Method with Symbolic Computation to Construct New Traveling Wave Solution for the (1+1)-dimensional Dispersive Long Wave Equation [J]. Appl Math Comput, 2005,168:1189-1204.
  • 10张琳琳,辛祥鹏.(2+1)-维修正KP方程的精确解(英文)[J].聊城大学学报(自然科学版),2009,22(3):9-13. 被引量:10

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部