期刊文献+

火电厂尿素水解产品气输送问题分析 被引量:13

Problem analysis for transportation of urea hydrolysis production gas for thermal power plants
下载PDF
导出
摘要 针对尿素水解产品气输送过程中存在的蒸汽回凝、氨基甲酸铵结晶析出等问题,分析了给料尿素溶液质量分数和水解反应器运行压力对产品气成分、蒸汽回凝温度和氨基甲酸铵结晶析出温度的影响。结果表明:蒸汽回凝温度和氨基甲酸铵结晶析出温度由给料尿素溶液质量分数和水解反应器运行压力决定;当运行压力0.7 MPa,给料溶液质量分数为50%时,产品气中水蒸气的回凝温度为133℃,氨基甲酸铵的结晶析出温度为85℃。并建议在设计伴热管道保温时,选用硬质或半硬质圆形保温材料,根据允许最大散热损失小于104 W/m2,计算保温层厚度。 Steam condensation,ammonium carbamate crystallization and other problems occurred during transportation of urea hydrolysis production.Thus,effects of the urea liquid mass fraction and reactor pressure on such parameters such as the compositions of the production gas,the steam condensation temperature and the ammonium carbamate crystallization temperature were investigated.The results show that,the steam condensation temperature and the ammonium carbamate crystallization temperature depended on the urea liquid mass fraction and reactor pressure.When the operation pressure was 0.7MPa and the feed mass fraction was 50%,the steam condensation temperature of the production gas was 133℃and the crystallization temperature of the ammonium carbamate was 85 ℃.Moreover,it is suggested that during the thermal insulation pipeline design,the hard or semi-hard circular thermal insulation material should be selected,and the insulation layer thickness be calculated according to the allowance maximum heat disspation rate(104 W/m2).
出处 《热力发电》 CAS 北大核心 2015年第11期114-117,共4页 Thermal Power Generation
基金 中国华能集团公司科学技术项目(ZA-14-HKR02)
关键词 尿素水解 氨基甲酸铵 回凝温度 结晶析出 烟气脱硝 伴热保温 urea hydrolysis ammonium carbamate condensation temperature crystallization flue gas denitration heat tracing
  • 相关文献

参考文献9

  • 1中国寰宇化学工程公司.氮肥工艺设计手册[M].北京:化学工业出版社,1988.
  • 2Sahu J N,Gangadharan P,Patwardhan A. Catalytic hy- drolysis of urea with fly ash for generation of ammonia in a batch reactor for flue gas conditioning and NOx re- duction[J]. Industrial & Engineering Chemistry Re- search, 2009,48(3) : 727-734.
  • 3Sahu J N,Rama V S,Patwardhan A V. Optimization of ammonia production from urea in continues process u- sing ASPEN Plus and computational fluid dynamics study of the reactor used for hydrolysis process[J]. Journal of Industrial and Engineering Chemistry, 2010, 16:577-586.
  • 4Mahalik K, Sahu J N, Patwardhan V, et al. Statistical modeling and optimization of hydrolysis of urea to gen- eration ammonia for flue gas conditioning[J]. Journal of Hazardous Materials, 2010,182 : 603-610.
  • 5Sahu J N,Mahalik K K, Patwardhan A V, et al. Equi- librium studies on hydrolysis of urea in a semi-batch reactor for production of ammonia to reduce hazardous pollutants from flue gases[J]. Journal of Hazardous Materials,2009,164(2~3) :659-664.
  • 6Isla M A, Irazoqui H A, Genoud C M. Simulation of a urea synthesis reactor. 1. Thermodynamic framework [J]. Industrial & Engineering Chemical Research, 2002,32 (11) :2662-2670.
  • 7Kotula, Edward. A vapour-liquid equilibrium model of the NH3-CO2-HzO-urea system at elevated pressure [J]. Journal of Chemical Technology & Biotechnology, 1981,31(1) : 103-110.
  • 8石油化工管道伴管和夹套管设计规范:SHT3040-2002[S].
  • 9GB/T4272--2008,设备及管道绝热技术通则[S].

共引文献1

同被引文献89

引证文献13

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部