期刊文献+

纳米粒子改善聚乳酸基共混物相容性和力学性能的研究进展

Progress in compatibility and mechanical properties of polylactic acid-based blend improved by nanoparticles
下载PDF
导出
摘要 聚乳酸(PLA)作为一种绿色可生物降解高分子材料广泛地应用在包装等领域,但是其质脆的缺点限制其进一步应用。将PLA与柔性聚合物共混可改善其韧性,但会大幅降低其强度。向PLA基共混物中添加纳米粒子可弥补柔性聚合物所引起的共混物力学强度的降低,且纳米粒子可起增容作用,为获得具有良好韧性-强度平衡的PLA基多相纳米复合材料提供一种可能。本文综述了最近几年纳米粒子对PLA基共混物力学性能的影响,并指出目前研究工作的不足,为开发PLA基多相纳米复合材料提供一定指导。 PLA is widely used in areas such as packaging as a green biodegradable polymer material, but its brittle shortcomings limit further application. Blending with flexible polymer can improve the toughness of PLA, but its strength will be will significantly reduced. Adding nanoparficles fo PLA based blend can compensate for lowered mechanical strength caused by the flexible polymer, and nanoparticles can play a compatibilizing effect, which provides a possibility to obtain PLA-based multiphase nanocomposite materials with good toughness - strength balance. This paper reviews the impact of nanoparticles on the mechanical properties of PLA-based blend in the recent years, points out the shortcomings of current research work, and provides some guidance for the development of PLA-based multiphase nanocomposife material.
作者 俞峰 黄汉雄
出处 《橡塑技术与装备》 CAS 2015年第20期15-19,共5页 China Rubber/Plastics Technology and Equipment
关键词 聚乳酸 共混物 纳米粒子 力学性能 综述 PLA blend nanoparticle mechanical property review
  • 相关文献

参考文献18

  • 1Li Y.J., Shimizu H. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer [J]. Macromol. Biosci., 2007, 7(7): 921-928.
  • 2Han J.J., Huang H.X. Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends [J]. ,I. App. Polym. Sci., 2011. 120(6): 3 217-3 223.
  • 3Jaso V., Cvetinov M., Rakic S., et al. Bio-plastics and elastomers from polylactic acid/thermoplastic polyurethane blends [J]. J. App. Polym. Sci., 2014, 131(22): 41104.
  • 4Liu H.Z., Song W.J., Chen F., et al. Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends [J]. Macromolecules, 2011, 44(6):1 513-1 522.
  • 5Oyama H.I. Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer [.1]. Polymer, 2009, 5G(3):747~751.
  • 6Taguet A., Cassagnau P., Lopez-Cuesta J.M. Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends [.I]. Prog. Polym. Sci., 2014, 39(8): 1 526-1 563.
  • 7Fenouillot F., Cassagnau P., Majeste J.C. Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends [J]. Polymer, 2009, 50(6): 1 333-1 350.
  • 8Elias L., Fenouillot F., Majeste J.C., et al. Morphology and rbeology of immiscible polymer blends filled with silica nanoparticles [J]. Polymer, 2007, 48(20): 6 029-6040.
  • 9Xiang F.M., Wu J., Liu L., et al. Largely enhanced ductility of immiscible high density polyethylene/ polyamide 6 blends via nano-bridge effect of functionalized multiwalled carbon nanotubes [J]. Polym. Advan. Technol., 2011, 22(12): 2 533-2 542.
  • 10Chen J., Shi Y.Y., Yang J.H., et al. Improving interfacial adhesion between immiscible polymers by carbon nanotubes [J]. Polymer, 2013, 54(1): 467-471.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部