摘要
Polypropylene(PP) meltblown fibers were coated with titanium dioxide(Ti O2) nanoparticles using layer-by-layer(Lb L) deposition technique. The fibers were first modified with 3layers of poly(4-styrenesulfonic acid)(PSS) and poly(diallyl-dimethylammonium chloride)(PDADMAC) to improve the anchoring of the Ti O2 nanoparticle clusters. PDADMAC, which is positively charged, was then used as counter polyelectrolyte in tandem with anionic Ti O2 nanoparticles to construct Ti O2/PDADMAC bilayer in the Lb L fashion. The number of deposited Ti O2/PDADMAC layers was varied from 1 to 7 bilayer, and could be used to adjust Ti O2 loading. The Lb L technique showed higher Ti O2 loading efficiency than the impregnation approach. The modified fibers were tested for their photocatalytic activity against a model dye, Methylene Blue(MB). Results showed that the Ti O2 modified fibers exhibited excellent photocatalytic activity efficiency similar to that of Ti O2 powder dispersed in solution. The deposition of Ti O23 bilayer on the PP substrate was sufficient to produce nanocomposite fibers that could bleach the MB solution in less than 4 hr.Ti O2-Lb L constructions also preserved Ti O2 adhesion on substrate surface after 1 cycle of photocatalytic test. Successive photocatalytic test showed decline in MB reduction rate with loss of Ti O2 particles from the substrate outer surface. However, even in the third cycle, the Ti O2 modified fibers are still moderately effective as it could remove more than 95% of MB after 8 hr of treatment.
Polypropylene(PP) meltblown fibers were coated with titanium dioxide(Ti O2) nanoparticles using layer-by-layer(Lb L) deposition technique. The fibers were first modified with 3layers of poly(4-styrenesulfonic acid)(PSS) and poly(diallyl-dimethylammonium chloride)(PDADMAC) to improve the anchoring of the Ti O2 nanoparticle clusters. PDADMAC, which is positively charged, was then used as counter polyelectrolyte in tandem with anionic Ti O2 nanoparticles to construct Ti O2/PDADMAC bilayer in the Lb L fashion. The number of deposited Ti O2/PDADMAC layers was varied from 1 to 7 bilayer, and could be used to adjust Ti O2 loading. The Lb L technique showed higher Ti O2 loading efficiency than the impregnation approach. The modified fibers were tested for their photocatalytic activity against a model dye, Methylene Blue(MB). Results showed that the Ti O2 modified fibers exhibited excellent photocatalytic activity efficiency similar to that of Ti O2 powder dispersed in solution. The deposition of Ti O23 bilayer on the PP substrate was sufficient to produce nanocomposite fibers that could bleach the MB solution in less than 4 hr.Ti O2-Lb L constructions also preserved Ti O2 adhesion on substrate surface after 1 cycle of photocatalytic test. Successive photocatalytic test showed decline in MB reduction rate with loss of Ti O2 particles from the substrate outer surface. However, even in the third cycle, the Ti O2 modified fibers are still moderately effective as it could remove more than 95% of MB after 8 hr of treatment.
基金
supported by Rachadapisek Sompote Fund for Postdoctoral Fellowship, Chulalongkorn University, Thailand
the Nanotechnology Center (NANOTEC), NSTDA Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network
National Research University Project of CHE
the Rachadapisek Sompote Endowment Fund (No. AM1041A)