期刊文献+

用于多脑区神经环路解析的新型光电极阵列

Optrode Arrays for Multi-Circuit Dissection
下载PDF
导出
摘要 光遗传技术已被广泛用于神经环路的精确解析,帮助人们深入理解神经精神疾病的发病机制。然而在活体水平实现多脑区的光遗传调控和电生理记录仍然极具挑战。文章介绍了一种制备多脑区光电极阵列的方法。这种光电极阵列包含微电极支架和步进装置,可以同时对小鼠4个脑区的自发电生理信号(包括神经元放电和场电位)和光遗传调控后诱发的电生理变化进行记录。此外,还采用电化学修饰技术,显著降低了电极界面阻抗,提高了电生理记录信号的质量和稳定性。文章利用该光电极阵列对光遗传调控前后不同脑区之间神经元的同步化关系进行了分析,通过4',6-二脒基-2-苯基吲哚染色确定了光电极的植入位点。实验结果表明,这种多脑区光电极阵列适用于多脑区水平的研究,并且容易与其他在体研究方法结合,实现对特定神经环路的精确解析。 Optogenetics has been successfully applied to understand the mechanisms of neuropsychiatric diseases through the precise temporal control of specific neural circuitries. However, it remains a great challenge to integrate optogenetic modulation with electrophysiological recordings in multiple brain regions in vivo. In this study, a simplified method for the fabrication and electrochemical modification of the multicircuit optrode arrays was developed. The modified optrode arrays exhibited a significantly higher capacitance and lower electrochemical impedance at 1 k Hz as compared to unmodified optrodes. The optrode arrays were chronically implanted into the brain of VGAT-Ch R2 transgenic mice. Spontaneous action potentials and local field potentials as well as light-evoked responses were obtained in 4 different brain regions in vivo. The crossarea synchronizations were analyzed and the localizations of the implanted optrode arrays were confirmed by 4', 6-diamidino-2-phenylindole immunofl uorescence staining. All these characteristics are greatly desired in optogenetic applications, and the fabrication method of the optrodes can be easily integrated with other in vivo techniques to build more advanced tools for the dissection of neural circuitry.
出处 《集成技术》 2015年第6期65-73,共9页 Journal of Integration Technology
关键词 光遗传学 多脑区 神经环路解析 光电极阵列 表面修饰 optogenetics multiple brain regions neural circuitry dissection optrode array surface modification
  • 相关文献

参考文献1

二级参考文献16

  • 1Cogan S F. Neural stimulation and recording electrodes [ J ]. Annual Review of Biomedical Engineering, 2008, 10 : 275- 309.
  • 2Meyer R D, Cogan S F, Nguyen T H, et al. Electrodeposited iridium oxide for neural stimulation and recording electrodes [ J ]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2001, 9( 1 ) :2-11.
  • 3Zhou H B, Li G, Sun X N, et al. Integration of Au nanorods with flexible thin-film microelectrode arrays for improved neural interfaces[ J]. Journal of Microelectromechanical Systems, 2009, 18 ( 1 ) : 88-96.
  • 4Merrill D R, Bikson M, Jefferys J G R. Electrical stimulation of excitable tissue: Design of efficacious and safe protocols[J]. Journal of Neuroscience Methods, 2005, 141 (2) : 171-198.
  • 5Bauerdick S, Burkhardt C, Kern D P, et al. Substrate integrated microelectrodes with improved charge transfer capacity by 3-dimensional micro-fabrication [ J ]. Biomed Microdevices, 2003, 5(2) :93-99.
  • 6Hung A, Zhou D, Greenberg R, et al. Micromachined electrodes for high density neural stimulation systems [ C ]// 15th IEEE International Conference on Micro Electro Mechanical Systems. Las Vegas, NV, USA , 2002: 56-59.
  • 7Paik S J, Park Y, Cho D D. Roughened polysilicon for low impedance microelectrodes in neural probes [ J ]. Journal of Micromechanics and Microengineering, 2003, 13 ( 3 ) : 373- 379.
  • 8Cui X Y, Lee V A, Raphael Y, et al. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends [ J ]. Journal of Biomedical Materials Research, 2001, 56(2) :261-272.
  • 9Lovat V, Pantarotto D, Lagostena L, et al. Carbon nanotube substrates boost neuronal electrical signaling[J]. Nano Letters , 2005, 5(6) :1107-1110.
  • 10Nguyen-Vu T D B, Chen H, Cassell A M, et al. Vertically aligned carbon nanofiber architecture as a multifunctional 3D neural electrical interface [ J ]. IEEE Transactions on Biomedical Engineering, 2007, 54 (6) : 1121-1128.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部