摘要
The invariance of strong and almost spirallike mappings of type β and order α is discussed in this paper. From the maximum modulus principle of holomorphic functions, we obtain that the generalized Roper-Suffridge operators preserve strong and almost spirallike-hess of type β and order α on the unit ball B^n in C^n and on bounded and complete Reinhardt domains. Therefore we obtain that the generalized Roper-Suffridge operators preserve strong spirllikeness of type β, strong and almost starlikeness of order α, strong starlikeness on the corresponding domains.Thus we can construct more subclasses of spirallike mappings in several complex variables.
The invariance of strong and almost spirallike mappings of type β and order α is discussed in this paper. From the maximum modulus principle of holomorphic functions, we obtain that the generalized Roper-Suffridge operators preserve strong and almost spirallike-hess of type β and order α on the unit ball B^n in C^n and on bounded and complete Reinhardt domains. Therefore we obtain that the generalized Roper-Suffridge operators preserve strong spirllikeness of type β, strong and almost starlikeness of order α, strong starlikeness on the corresponding domains.Thus we can construct more subclasses of spirallike mappings in several complex variables.
基金
supported by NSF of China(11271359
U1204618)
Science and Technology Research Projects of Henan Provincial Education Department(14B110015
14B110016)