期刊文献+

自然语言处理技术在中高职课程衔接中的应用

Application of Natural Language Processing Technology in Cohesion Between Secondary and Higher Vocational Education Curriculum
下载PDF
导出
摘要 在中高职课程衔接的实际中,存在着中高职专业设置不对口、专业课程内容重复等问题。为了选择对口专业及查找重复课程,采用人工手段对教育教学文件进行分析研究,效率低、精确性差。而使用计算机自然语言处理技术对中高职教学文件中的文本数据进行分析,可以快速获得中高职相关专业之间的相似度及专业课程内容之间的重复度,为课程设置提供科学依据。将自然语言处理技术用于青岛远洋船员职业学院"船舶工程技术"专业中高职课程衔接问题上,对相关文件进行分析,得到合理的结论。 There are many problems in cohesion between secondary and higher vocational education, such as specialty mismatch and course content duplication. In order to solve these problems, manual work is adopted to analyze education documents, which has low efficiency and poor accuracy, while natural language processing technology is used to analyze the documents,similarities between specialties and repeat-ability between courses can be quickly obtained, which can provide a scientific basis for curriculum. In this paper,natural language processing technology is used to analyze education documents of Qingdao Ocean Shipping Mariners College, and the result shows that it is reasonable.
出处 《职业教育研究》 2015年第11期60-63,共4页 Vocational Education Research
基金 2013年交通运输职业教育教学指导委员会科研项目"船舶工程技术专业群中高职教育课程衔接研究"(项目编号:2013B40)
关键词 中高职衔接 自然语言处理技术 课程设置 cohesion between secondary and higher vocational education natural language processing curriculum
  • 相关文献

二级参考文献23

  • 1中华人民共和国国家教育委员会.中等职业学校专业目录[M].教育科学出版社,1998..
  • 2鲁昕.用科学发展观指导推进职业教育改革创新全面提升国家培养技能型人才的能力和水平.在全国中等职业学校校长改革创新战略专题研究班上的讲话.2009.
  • 3Fung B C M,Wang K,Ester M.Hierarchical document clustering//Wang John ed.The Encyclopedia of Data Warehousing and Mining,idea Group.2005:970-975.
  • 4Salton G.The SMART Retrieval System-Experiments in Automatic Document Processing.Englewood Cliffs,New Jersey:Prentice Hall Inc,1971.
  • 5Wang Y,Julia H.Document clustering with semantic analysis//Proceedings of the 39th Hawaii International Conferences on System Sciences.Hawaii,US,2006:54-63.
  • 6Hotho A,Staab S,Stumme G.Wordnet improves text document clustering//Proceedings of the Semantic Web Workshop at SIGIR-2003,26th Annual International ACM SIGIR Conference.Toronto,Canada,2003:541-550.
  • 7Hall P,Dowling G.Approximate string matching.Computing Survey,1980,12(4):381-402.
  • 8Coelho T,Calado P,Souza L,Ribeiro-Neto B,Muntz R.Image retrieval using multiple evidence ranking.IEEETransactions on Knowledge and Data Engineering,2004,16(4):408-417.
  • 9Ko Y,Park J,Seo J.Improving text categorization using the importance of sentences.lnformation Processing and Management,2004,40(1):65-79.
  • 10Erkan G,Radev D.Lexrank:Graph-based lexical centrality as salience in text summarization.Journal of Artificial Intelligence Research,2004,22(7):457-479.

共引文献229

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部