期刊文献+

医院内媒介交叉感染的数学建模及稳定性分析

Mathematical Modeling and Stability Analysis of Media Cross-Infection in Hospitals
原文传递
导出
摘要 结合医院内媒介交叉感染的实际问题,建立了医院内以医生和护士为传染媒介引起的抗生素耐药性交叉感染模型,得到了控制疾病流行与否的阈值R_0,分析了阈值条件下无病平衡点和正平衡点的稳定性等动力学性态,得到了R_0<1时无病平衡点是全局稳定的,且医院携带耐药菌的医护人员和病人数都为零,不会发生交叉感染,R_0>1时有且仅有一个正平衡点E*,且全局稳定,医院内抗生素耐药性的交叉感染将趋于平稳流行. Combined with media-cross infection in hospitals, the mathematical model es- tablishes cross infection model with antibiotic-drug resistance that caused by healthcare workers, who play as vector of infection; getting threshold R0 that controls popularity of disease; analyzing the stability of disease-free equilibrium and positive equilibrium under threshold Ro condition. Furthermore, when R0 〈 1, the disease-free equilibrium is globally stable and there is no cross infection when the number of healthcare workers and patients with drug-resistance bacteria is zero, and there is only one positive equilibrium E* when the mathematia model makes certain that threshold R0 〉 1 is in globally stable situation and cross functiorL of antibiotics-drug resistance is in smoothly development.
机构地区 中北大学理学院
出处 《数学的实践与认识》 北大核心 2015年第21期203-209,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(11301491) 山西省自然科学基金(2015011009)
关键词 医院内交叉感染 传染媒介 双线性发生率 稳定性 media-cross infection in hospital media infection bilinear incidenc stability
  • 相关文献

参考文献13

  • 1http://baike.baidu.com/view/323359.htm.
  • 2Kribs-Zaleta C M, Jusot J F, Vanhems P. et al. Modeling nosocomial transmission of rotavirus in pediatric wards[J]. Bulletin of mathematical biology, 2011, 73(7): 1413-1442.
  • 3李燕.抗生素的耐药性[J].国外医药(合成药.生化药.制剂分册),1999,20(6):352-355. 被引量:12
  • 4Sebille V, Chevret S, Valleron A J. Modeling the spread of resistant nosocomial pathogens in an intensive-care unit[J]. Infection Control and Hospital Epidemiology, 1997: 84-92.
  • 5Sebille V, Valleron A J. A computer simulation model for the spread of nosocomial infections caused by multidrug-resistant pathogens[J]. Computers and biomedical research, 1997, 30(4): 307-322.
  • 6李桂花.一类具有非线性传染率的传染病模型性态分析[J].中北大学学报(自然科学版),2009,30(2):95-99. 被引量:2
  • 7Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical biosciences, 2002, 180(1): 29-48.
  • 8张少辉,靳祯.具有非线性发生率的传染病模型性态分析[J].中北大学学报(自然科学版),2012,33(4):353-357. 被引量:10
  • 9Hou Q, Sun X, Zhang J, et M. Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region, China[J]. Mathematical biosciences, 2013, 242(1): 51-58.
  • 10Abid Ali Lashari,Muhammad Ozair,Gul Zaman,李学志.潜伏期和染病期均具有传染性的媒介传染病模型的全局稳定性分析(英文)[J].应用泛函分析学报,2012,14(4):321-329. 被引量:6

二级参考文献43

  • 1May R M,Anderson R M.Population biology of infectious diseases.Part Ⅱ[J].Nature,1979,280:455-461.
  • 2Anderson R M,May R M.Population biology of infectious diseases.Part I[J].Nature,1979,280:361-367.
  • 3Brauer F,Castillo-Chavez C.Mathematical Models in Population Biology[M].Springer-Verlag,Berlin-Heidelberg,New York,2001.
  • 4De Jong M C M,Diekmann O,Heesterbeek J A P.How Does Transmission Depend on Population Size?,In Human Infectious Diseases,Epidemic Models,Mollison D,ed.[M].Cambridge:Cambridge University Press,1995:84-94.
  • 5Grenfell B T.Ecology of Disease in Natural Populations[M].Cambridge:Cambridge University Press,1995.
  • 6McCallum H.Modelling wildlife-parasite interactions to help plan and interpret field studies[J].Wildlife Research,1995,22:21-29.
  • 7Thieme H R.Stability Change of the Endemic Equilibrium in Age-structured Models for the Spread of S→1→R Type Infectious Diseases.Differential Equations Models in Biology,Epidemiology and Ecology (Claremont,CA,1990)[M].Lecture Notes in Biomath.,Springer,Berlin,1991,92:139-158.
  • 8Wang W,Li Y,Hethcote H W.Bifurcations in a host-parasite model with nonlinear incidence[J].Internat.J.Bifur.Chaos Appl.Sci.Engrg.,2006,11:3291-3307.
  • 9Ebert D,Lipsitch M,Mangin K L.The effect of parasites on host population density and extinction:experimental epidemiology with Daphnia and six microparasites[J].American Naturalist,2000,156:459-477.
  • 10Hwang T W.Deterministic extinction effect of parasites on host populations[J].Math.Biol,2003,46:17-30.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部