期刊文献+

稀疏编码目标跟踪方法研究 被引量:1

Research on sparse coding object tracking method
下载PDF
导出
摘要 针对稀疏表示用于目标跟踪时存在重构误差表示不够精确、目标模板更新错误等问题,提出一种改进的稀疏编码模型。该模型无需重构误差满足特定的先验概率分布,且加入对编码系数的自适应约束,可以取得更优的编码向量,使得跟踪结果更为准确。在此基础上,将这种改进的编码模型与粒子滤波目标跟踪算法相结合,研究并实现一种新的基于鲁棒稀疏编码模型的目标跟踪方法。该方法对每个粒子的采样区域进行编码,用所得的稀疏编码向量作为当前粒子的观测量,并采用目标模板分级更新策略,使得目标模板更加准确。实验结果表明,方法可以较好地解决目标部分遮挡和光照变化等干扰下的目标跟踪问题。 To deal with the problems in sparse presentation’s application to object tracking, such as the not accurate enough representation of construction error, the wrong update of object templates and so on. This paper proposes a modified sparse coding model. This model doesn’t require the construction error following a particular prior probability density function, and adds an adaptive restraint of the coding coefficient, and this model can acquire better coding vectors for more accurate tracking results. Combined the modified model with the particle filter object tracking algorithm on this basis,a new object tracking method based on the robust sparse coding model is researched and realized. The proposed method encodes every particle’s sample area, uses the sparse coding vector as the observation for the particle, and updates the object templates with different grade to make them more accurate. The experiment results show that the proposed object tracking method can deal well with the corruption like occlusion and illumination variation in object tracking.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第22期53-60,共8页 Computer Engineering and Applications
基金 国家自然科学基金(No.61075032) 安徽省自然科学基金(No.1408085QF117)
关键词 目标跟踪 稀疏编码 稀疏表示 粒子滤波 object tracking sparse coding sparse representation particle filter
  • 相关文献

参考文献25

  • 1Yilmaz A,Javed O,Shah M.Object tracking:A survey[J]. ACM Comput Surveys,2006,38(4) : 13-32.
  • 2Babenko B,Yang M H,Belongie S.Visual tracking with online multiple instance learning[C]//IEEE Conference on CVPR, Miami, FL, IEEE Proc, 2009 : 983-990.
  • 3Breitenstein M D, Reichlin F,Leibe B, et al.Robust tracking- by-detection using a detector confidence particle filter[C]// IEEE Conference on ICCV, Kyoto, IEEE Proc, 2009: 1515-1522.
  • 4Grabner H, Grabner M, Bischof H.Real-time tracking via on-line boosting[C]//British Machine Vision Conference, 2006:47-55.
  • 5Matthews I, Baker S.Active appearance models revisited[J]. International Journal of Computer Vision, 2004,60 : 135-164.
  • 6Zhou S K, Chellappa R.Visual tracking and recognition using appearance-adaptive models in particle filters[J].IEEE Transactions on Image Processing,2004, 13 : 1491-1506.
  • 7Lain M,Takahiro I,Simon B.The template update prob- lem[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26 : 810-815.
  • 8汪荣贵,沈法琳,李孟敏.非线性系统状态突变下的非退化粒子滤波方法研究[J].中国科学技术大学学报,2012,42(2):140-147. 被引量:3
  • 9Mei X, Ling H.Robust visual tracking using e1 minimi- zation[C]//IEEE Conference on ICCV,Kyoto,IEEE Proe, 2009 : 1436-1443.
  • 10戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3):425-434. 被引量:214

二级参考文献105

  • 1韩玉兵,陈小蔷,吴乐南.一种视频序列的超分辨率重建算法[J].电子学报,2005,33(1):126-130. 被引量:8
  • 2李景熹,王树宗.UPF算法及其在目标跟踪问题中的应用[J].系统仿真学报,2007,19(3):675-677. 被引量:10
  • 3方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 4叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 5Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian stateestimation [J]. IEEE Proceedings F on Radar and Signal Processing, 1993, 140 (2): 107-113.
  • 6Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/nongaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 7Doucte A, de Freitas N, Gordon N. Sequential Monte Carol Methods in Practice[M]. New Work: Springer- Verlag, 2001.
  • 8Khan Z, Balch T, Dellaert F. An MCMC-based particle filter for tracking multiple interacting targets[C]// Proceedings of the 8th European Conference on Computer Vision. Berlin: Springer-Verlag, 2004: 279-290.
  • 9Higuehi T. Genetic algorithm and Monte Carlo filter [J]. Proceedings of the Institute of Statistical Mathematics, 1996, 44(1): 19-30.
  • 10Higuchi T. Monte Carlo filter using the genetic algorithm operators [ J ]. Journal of Statistical Computation and Simulation, 1997, 50(1) : 1-23.

共引文献304

同被引文献13

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部