期刊文献+

一种非负稀疏近邻表示的多标签学习算法

A Non-Negative Sparse Neighbor Representation for Multi-Label Learning Algorithm
下载PDF
导出
摘要 针对训练数据中的非线性流形结构以及基于稀疏表示的多标签分类中判别信息丢失严重的问题,该文提出一种非负稀疏近邻表示的多标签学习算法。首先找到待测试样本每个标签类上的k-近邻,然后基于LASSO稀疏最小化方法,对待测试样本进行非负稀疏线性重构,得到稀疏的非负重构系数。再根据重构误差计算待测试样本对每个类别的隶属度,最后实现多标签数据分类。实验结果表明所提出的方法比经典的多标签k近邻分类(ML-KNN)和稀疏表示的多标记学习算法(ML-SRC)方法性能更优。 In order to avoid the influence of the nonlinear manifold structure in training data and preserve more discriminant information in the sparse representation based multi-label learning, a new multi-label learning algorithm based on non-negative sparse neighbor representation is proposed. First of all, the k-nearest neighbors among each class are found for the test sample. Secondly, based on non-negative the least absolute shrinkage and selectionator operator (LASSO)-type sparse minimization, the test sample is non-negative linearly reconstructed by the k-nearest neighbors. Then, the membership of each class for the test sample is calculated by using the reconstruction errors. Finally, the classification is performed by ranking these memberships. A fast iterative algorithm and its corresponding analysis of converging to global minimum are provided. Experimental results of multi-label classification on several public multi-label databases show that the proposed method achieves better performances than classical ML-SRC and ML-KNN.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2015年第6期899-904,共6页 Journal of University of Electronic Science and Technology of China
基金 国家863项目(2014AA015104) 国家自然科学基金(61202228,61472002) 安徽省高校自然科学研究重点项目(KJ2012A004)
关键词 多标签学习 稀疏近邻表示 LASSO稀疏最小化 非负重构 LASSO sparse minimization multi-label learning non-negative reconstruction sparse neighbor representation
  • 相关文献

参考文献14

  • 1SCHAPIRE R E, SINGER Y. Boostexter: a boosting-based system for text categorization[J]. Machine Learning, 2000, 39(2-3): 135-168.
  • 2UEDA N, SAITO K. Parametric mixture models for multi-label text[J]. Advances in Neural Information Processing, 2003(15): 721-728.
  • 3ZHANG M L, ZHOU Z H. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7): 2038-2048.
  • 4SANDEN C, ZHANG J Z. Enhancing multi-label music genre classification through ensemble techniques[C] //Proceedings of the 34th international ACM SIGIR Conference on Research and development in Information Retrieval. New York: ACM, 2011: 705-714.
  • 5ELISSEEFF A, WESTON J. A kernel method for multi- labelled classification[J]. Advances in Neural Information Processing, 2002(14): 681-687.
  • 6CAND]S E J, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 7WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 8JI Y, LIN T, ZHA H. Mahalanobis distance based non- negative sparse representation for face recognition[C]// International Conference on Machine Learning and Applications. Miami, FL: IEEE, 2009: 41-46.
  • 9HUI K, LI C, ZHANG L. Sparse neighbor representation for classification[J]. Pattern Recognition Letters, 2012, 33(5): 661-669.
  • 10宋相法,焦李成.基于稀疏表示的多标记学习算法[J].模式识别与人工智能,2012,25(1):124-129. 被引量:5

二级参考文献16

  • 1赵瑞珍,刘晓宇,LI ChingChung,SCLABASSI Robert J,孙民贵.基于稀疏表示的小波去噪[J].中国科学:信息科学,2010,40(1):33-40. 被引量:25
  • 2Schapire R E,Singer Y.Boostexter:A Boosting-Based System for Text Categorization.Machine Learning,2000,39(2/3):135-168.
  • 3Elisseeff A,Weston J.A Kernel Method for Multi-Labelled Classification//Dietterich T G,Becker S,Ghahramani Z,eds.Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,2002,XIV:681-687.
  • 4Boutell M R,Luo J,Shen X,et al.Learning Multi-Label Scene Classification.Pattern Recognition,2004,37(9):1757-1771.
  • 5de ComitéF,Gilleron R,Tommasi M.Learning Multi-Label Alternating Decision Tree from Texts and Data∥Proc of the3rd International Conference on Machine Learning and Data Mining in Pattern Recognition.Leipzig,Germany,2003:35-49.
  • 6Zhang Minling,Zhou Zhihua.ML-KNN:A Lazy Learning Approach to Multi-Label Learning.Pattern Recognition,2007,40(7):2038-2048.
  • 7Wright J,Yang A Y,Ganesh A,et al.Robust Face Recognition via Sparse Representation.IEEE Trans on Pattern Analysis and Machine Intelligence,2009,31(2):201-227.
  • 8Candès E J,Romberg J,Tao T.Robust Uncertainty Principles:Exact Signal Reconstruction from Highly Incomplete Frequency Information.IEEE Trans on Information Theory,2006,52(2):489-509.
  • 9Candès E J,Tao T.Near-Optimal Signal Recovery from Random Projections:Universal Encoding Strategies?IEEE Trans on Information Theory,2006,52(12):5406-5425.
  • 10Donoho D.For Most Large Underdetermined Systems of Linear Equations the Minimal l1-norm Solution Is Also the Sparsest Solution.Communications on Pure and Applied Mathematics,2006,59(6):797-829.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部