期刊文献+

电信数据中用户行为特征测量与分析 被引量:4

Measurement and Analysis of User Behaviors in Mobile Data
下载PDF
导出
摘要 通话和上网是电信运营商的重要业务,研究通话和上网的行为规律有助于提升电信运营商的业务规划和管理水平。现有的研究工作通常只关注于手机通话或上网行为,很少同时对两类行为进行关联的分析。该文提取了电信数据中手机通话与上网的基本特征,对通话和上网行为的频率分布进行了曲线拟合。通过比较两类行为的拟合参数与相关系数,发现了工作日与周末、以及周六与周日显著不同的用户行为特征。通过对通话和上网时间的归一化,定义了用户的使用偏好,发现54%的手机用户更多的倾向于使用手机通话,而31%的用户则倾向于使用手机上网。 Mobile calls and mobile-internet surfing are two important telecom services. The study of user behaviors on mobile calls and mobile-internet surfing is of great value to telecom operators in improving business planning and business management. Previous studies on user behaviors mainly focus on either mobile calls or mobile-internet surfing. There is little research that is conduced into the study of the interaction between mobile calls and mobile-internet surfing. In this paper, we first capture the basic features of the user behaviors in mobile calls and mobile-internet surfing. Through the curve fitting of frequency distributions of mobile calls and mobile-internet surfing, we find that there exist significant differences of user behaviors between workdays and weekends. We also normalize and compare the time that users spend on mobile-internet surfing and mobile calls. The results show that over 54% of users prefer using mobile calls, and over 31% of users prefer using mobile-internet surfing.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2015年第6期934-939,共6页 Journal of University of Electronic Science and Technology of China
基金 国家863项目(2011AA010706) 国家自然科学基金(61170041)
关键词 曲线拟合 频率分布 测量 电信数据 统计分析 用户行为 curve fitting frequency distribution measurement mobile data statistical analysis user behavior
  • 相关文献

参考文献19

  • 1CANDIA J, GONZALAZ M C, WANG P, et al. Uncovering individual and collective human dynamics from mobile phone records[J]. Journal of Physics A: Mathematical and Theoretical, 2008, 41(22): 1-15.
  • 2JO H H, KARSAI M, KERTESZ K, et al. Circadian pattern and burstiness in mobile phone communication[J]. New Journal of Physics, 2012, 14(1): 20-37.
  • 3ONNELA J P, SARAMAKI J, HYVONEN J, et al. Analysis of a large-scale weighted network of one-to-one human communication[J]. New Journal of Physics, 2007, 9(6): 179-201.
  • 4MOTAHARI S, ZANG H, REUTHER P. The impact of temporal factors on mobility patterns[C]//45th International Conference on System Science(HICSS). Hawaii: IEEE, 2012.
  • 5OLMEDILLA D, FRIAS-MARTINEZ E, LARA R. Mobile web profiling: a study of off-portal surfing habits of mobile users[C]//Proceedings of the 18th International Conference on UMAP. Big Island, USA: Springer Berlin Heidelberg, 2010: 339-350.
  • 6DUGGAN M, SMITH A. Cell internet use 2013[EB/OL]. [2014-01-01]. http://www.pewintemet.org/2013/09/16/cell- internet-use-2013/.
  • 7TAYLOR C A, ANICELLO O, SOMOHANO S, et al. A framework for understanding mobile internet motivations and behaviors[M]. New York: ACM, 2008.
  • 8GHOSE A, HANS P. An empirical analysis of user content generation and usage behavior on the mobile internet[J]. Management Science, 2011, 57(9): 1671-1691.
  • 9HSU S L, DOONG H S, WANG H. Exploring diffusion patterns of 3G wireless Intemet service adoption[C]//2nd International Conference on Computer Engineering and Technology(ICCET). Assisi-Perugia: IEEE, 2010.
  • 10WANG C. Surfing mobile internet motivated by fashion attentiveness: an empirical study of mobile intemet use in China[C]//8th Asia-Pacific Regional ITS Conference. Taipei, China: [s.n.]: 2011.

同被引文献23

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部