摘要
The self-affine measure μM,D associated with an expanding matrix M ∈ Mn(Z) and a finite digit set D ? Znis uniquely determined by the self-affine identity with equal weight. The set of orthogonal exponential functions E(Λ) := {e2πiλ,x : λ∈Λ} in the Hilbert space L2(μM,D) is simply called μM,D-orthogonal exponentials. We consider in this paper the finiteness of μM,D-orthogonality. A necessary and sufficient condition is obtained for the set E(Λ) to be a finite μM,D-orthogonal exponentials. The research here is closely connected with the non-spectrality of self-affine measures.
The self-affine measure μM,D associated with an expanding matrix M ∈ Mn(Z) and a finite digit set D ? Znis uniquely determined by the self-affine identity with equal weight. The set of orthogonal exponential functions E(Λ) := {e2πi λ,x : λ ∈ Λ} in the Hilbert space L2(μM,D) is simply called μM,D-orthogonal exponentials. We consider in this paper the finiteness of μM,D-orthogonality. A necessary and sufficient condition is obtained for the set E(Λ) to be a finite μM,D-orthogonal exponentials. The research here is closely connected with the non-spectrality of self-affine measures.
基金
supported by National Natural Science Foundation of China(Grant No.11171201)
the Fundamental Research Fund for the Central University(Grant No.GK201401004)