期刊文献+

基于改进的自组织映射入侵检测方法 被引量:2

Intrusion detection method based on improved self-organization mapping
下载PDF
导出
摘要 入侵检测作为保障互联网安全的主要措施之一,对于网络入侵的识别和诊断有着重要的意义。将自组织映射(SOM)的思想引入网络入侵检测中,提出了一种基于SOM的网络入侵检测算法。算法通过对SOM神经网络中输出神经元的邻域密度进行排名,同时结合受试者工作特征(ROC)曲线设置邻域密度阈值等方法,使得入侵检测的结果通过输出神经元的邻域密度进行表达,克服了SOM神经网络训练时容易产生畸变导致输出神经元自身的聚类结果难以理解的缺点。通过对算法仿真实验,表明该算法不仅有效而且拥有相当可观的检测率。 Intrusion detection is one of the main measures to ensure the Internet safety, and has important significance to recognize and diagnose the network intrusion. In this paper, the thought of self-organization mapping (SOM) is introduced into the network intrusion detection, and a network intrusion detection algorithm based on SOM is proposed. The neighborhood densi- ty of output neurone in SOM neural network is ranked. The method of setting the neighborhood density threshold in combination with receiver operating characteristic (ROC) curve makes the intrusion detection results express by neighborhood density of the output neurone. The disadvantage that the clustering results of output neurone itself are hard to understand has been overcome, which is caused by the distortion generating in SOM neural network training. The simulation experiments of the algorithm show that the algorithm is effective, and has appreciable detection rate.
出处 《现代电子技术》 北大核心 2015年第23期80-84,共5页 Modern Electronics Technique
基金 国家自然科学基金资助项目(61300053) 江苏省自然科学基金重点项目(BK2011023)
关键词 自组织映射 神经网络 ROC曲线 入侵检测 聚类分析 self-organization mapping neural network ROC curve intrusion detection clustering analysis
  • 相关文献

参考文献11

  • 1CHANDOLA V,BARJEE A,KUMAR V.Anomaly detection:a survey[J].ACM Computing Surveys,2009,41(3):1-58.
  • 2KIUMARSI B,LEWIS F L,LEVINE D S.Optimal control of nonlinear discrete time-varying systems using a new neural network approximation structure[J].Neurocomputing,2015,156:157-165.
  • 3杨占华,杨燕.SOM神经网络算法的研究与进展[J].计算机工程,2006,32(16):201-202. 被引量:78
  • 4DEAN D J,NGUYEN H,GU X H.UBL:unsupervised behavior learning for predicting performance anomalies in virtualized cloud systems[C]//Proceedings of 2012 the 9th International Conference on Autonomic Computing.[S.l.]:ACM,2012:191-200.
  • 5王丽敏,梁艳春,韩旭明,时小虎,李明.多获胜节点SOM及其在股票分析中的应用[J].计算机研究与发展,2008,45(9):1493-1500. 被引量:2
  • 6郭涛,李贵洋,袁丁.基于置信度和神经网络的信用卡异常检测[J].计算机工程,2008,34(15):205-207. 被引量:6
  • 7TAVALLAEE M,BAGHERI E,LU W,et al.A detailed analysis of the KDDCup99 data set[C]//Proceedings of 2009IEEE International Symposium on Computational Intelligence for Security and Defense Applications.Ottawa:IEEE,2009:53-58.
  • 8FENG Z,LI J,MEICHSNER J H.A Bayesian network intrusion detection algorithm based on principal component analysis and sliding window[J].International Journal of Security and Networks,2014,9(4):216-221.
  • 9AMOR N B,BENFERHAT S,ELOUEDI Z.Naive Bayes vs decision trees in intrusion detection systems[C]//Proceedings of 2004 ACM Symposium on Applied Computing.[S.l.]:ACM,2004:420-424.
  • 10PFAHRINGER B.Winning entry of the KDDCup99 classifier learning contest[J/OL].[1999-10-23].http://cseweb.ucsd.edu/-elkan/clresults.html.

二级参考文献30

  • 1尹峻松,胡德文,陈爽,周宗潭.DSOM:一种基于NO时空动态扩散机理的新型自组织模型[J].中国科学(E辑),2004,34(10):1094-1109. 被引量:4
  • 2孙放,胡光锐,高军.SOM结合MLP的神经网络语音识别系统[J].数据采集与处理,1996,11(2):119-122. 被引量:4
  • 3Kohonen T. The Self-organizing Maps[J]. Proceedings of the IEEE,1990, 78(9): 1464-1480.
  • 4Alahakoon D, Halgamuge S K. Dynamic Self-organizing Maps with Controlled Growth for Knowledge Discovery[J]. IEEE Transactions on Neural Networks, 2000, 11(3): 601-614.
  • 5Fritzke B. Growing Cell Structures-A Self-organizing Network for Unsupervised and Supervised Learning[J]. Neural Network, 1994,7(9): 1411-1460.
  • 6Choi D, Park S. Self-creating and Organizing Neural Networks[J].IEEE Transactions on Neural Networks, 1994, 5(4): 561-575.
  • 7Bebis G, Geoorgiopouls M, Lobo N V. Using Self-organizing Maps to Learn Geometric Hash Function for Model:based Object Recognition[J]. IEEE Transactions on Neural Networks, 1998, 9(5):560-570.
  • 8DeSieno D. Adding a Conscience to Competitive Learning[J]. IEEE International Conference on Neural Networks, 1988, 1(6): 117-124.
  • 9Xiao X. Gene Clustering Using Self-organizing Maps and Particle Swarm Optimization[C]. Parallel and Distributed Processing Symposium, 2003, 4.
  • 10Hussin M F, Kamel M. Document Clustering Using Hierarchical SOMART Neural Network[J]. Proceedings of the International Joint Conference on Neural Networks, 2003, 3(6): 2238-2242.

共引文献83

同被引文献12

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部