期刊文献+

基于脑电高频振荡节律的癫痫始发区快速定位算法研究 被引量:2

Fast Automated Detection Method of Seizure Onset Zone by High Frequency Oscillations
下载PDF
导出
摘要 最新研究发现癫痫脑电信号中的高频振荡节律(High-frequency Oscillations,HFOs)是定位癫痫始发区(Seizure Onset Zone,SOZ)的重要生物指标.在癫痫致痫灶术前定位的过程中,以癫痫样放电判断癫痫始发区的方法十分耗时,而且癫痫样放电与癫痫发作的关系还不明确,不但增加病人感染疾病的风险,还会造成误诊.本文设计了一种基于高频振荡节律的快速定位算法,利用功率谱密度的差异提取疑似癫痫始发区,再根据曲线模板检出高频振荡节律同步出现的导联;同时基于复Morlet小波将信号变换到时频域进行分析,共同实现癫痫始发区快速定位.经过对4例临床病例处理的结果表明,该算法灵敏度和特异性良好,有助于临床癫痫手术术前精确定位. High frequency oscillations have been recently proposed as a new biomarker of seizure onset zone. Marking epileptic discharge is highly time-consuming, easy to get false detection, and the relation between discharge and seizure still leaves much to define. This paper presents a fast automated detection method based on the difference of power spectral density in each channel, and similarity of filtered signal enveloped on epilepsy propagation path, and also the combination with complex Morlet wavelet transform to classify high frequency oscillations. The results obtained in 4 clinical cases show high performance in terms of sensitivity and specificity which can be considered as an effective method in preoperative localization.
出处 《广东工业大学学报》 CAS 2015年第4期60-66,共7页 Journal of Guangdong University of Technology
基金 国家科技支撑计划项目(504140001) 广东省科技计划项目(502140112)
关键词 高频振荡节律 癫痫脑电信号处理 AR模型 复Morlet小波变换 high frequency oscillations epileptic recordings AR model complex Morlet wavelet transform
  • 相关文献

参考文献13

  • 1Jacobs J, LeVan P, Chander R, et al. Interictal high-fre-quency oscillations ( 80 - 500 Hz) are an indicator of sei- zure onset areas independent of spikes in the human epilep- tic brain[J]. Epilepsia, 2008, 49( 11 ) :1893-1907.
  • 2Buzsaki, Horvatil, Urioste, et al. High-frequency network oscillation in the hippocampus [ J]. Science, 1992, 256 (5059) : 1025-1027.
  • 3Gardner, A B, Worrell. Human and automated detection of high-frequency oscillations in clinical intracranial EEG re- cordings. [J]. Clinical Neurophysiology, 2007, 118 ( 5 ) : 1134-1143.
  • 4Chaibi S, Bouet R, Jung J, et al. Developement of Matlab- based Graphical User Interface (GUI) for detection of high frequency oscillations (HFOs) in epileptic patients [ C ] // IEEE International Conference on Emerging Signal Process- ing Applications. [S. 1. ] :IEEE, 2012:56-62.
  • 5Havel T. Automatic detection of high-frequency oscillations in invasive recordings [ EB/OL]. (2013-04-05) [2015-04- 02]. http://ieeexplore ieee. org/xpl/h)gin, jsp? tp = &arnumber - 6549741&url = http% 3A% 2F% 2Fieeexplore. ieee. org% 2Fxpls% 2Fabs- all. jsp% 3 Farnumber% 3136549741.
  • 6Smart O L. Automatic Detection Of High Frequency Epilep- tiform. Oscillations From Intracranial Eeg Recordings Of Patients With Neocortical Epilepsy [ EB/OL ]. ( 2005-07- 08) [2015-04-02 ]. http://ieeexplore, ieee. org/xpl/login. jsp? tp = &arnumber = 1614347&url = http% 3A% 2F% 2Fieeexplore. ieee. org% 2Fxpls% 2Fabs- all. jsp% 3Farnumber% 3 D 1614347.
  • 7Chaibi S, Sakka Z, Lajnef T, et al. Automated detection and classification of high frequency oscillations (HFOs) in human intracereberal EEG[J]. Biomedical Signal Process- ing & Control, 2013, 8(6) :927-934.
  • 8Kachenoura A, Birot G, Albera L, et al. Detection and classification of fast ripples using wavelets [ C ] //Interna- tional Conference on Advances in Biomedical Engineering. [S. 1. ] :IEEE, 2013:81-84.
  • 9Zelmann R, Marl F, Jacobs J, et al. Automatic detector of High Frequency Oscillations for human recordings with macroelectrodes [ C ] //International Conference of the IEEE Engineering in Medicine & Biology Society. [ S. 1. ] : IEEE, 2010:2329-2333.
  • 10Brazdil M, Haldmek J, Jurak P, et al. lnterictal high-fre- quency oscillations indicate seizure onset zone in patients with focal cortical dysplasia [ J ]. Epilepsy Researeh, 2010, 90( 11 ) :28-32.

二级参考文献1

共引文献18

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部