期刊文献+

Single neutron hole entropy in ^(105)Cd and ^(111)Cd

Single neutron hole entropy in ^(105)Cd and ^(111)Cd
下载PDF
导出
摘要 The nuclear level density and entropy were calculated for105 Cd,106Cd,111 Cd and112Cd based on the Back Shifted Fermi Gas(BSFG) model and the Constant Temperature(CT) model. Then, the entropies were extracted in the microcanonical ensemble according to recent experimental data on nuclear level density measured by the Oslo group for these nuclei and are compared with their corresponding macroscopic calculations. Entropies of the neutron hole were estimated from the entropy difference between the odd-mass and even-even nuclei. The results reveal that the CT model describes better the extracted microcanonical results. The nuclear level density and entropy were calculated for105 Cd,106Cd,111 Cd and112Cd based on the Back Shifted Fermi Gas(BSFG) model and the Constant Temperature(CT) model. Then, the entropies were extracted in the microcanonical ensemble according to recent experimental data on nuclear level density measured by the Oslo group for these nuclei and are compared with their corresponding macroscopic calculations. Entropies of the neutron hole were estimated from the entropy difference between the odd-mass and even-even nuclei. The results reveal that the CT model describes better the extracted microcanonical results.
出处 《Nuclear Science and Techniques》 SCIE CAS CSCD 2015年第5期98-101,共4页 核技术(英文)
关键词 熵差 中子 微正则系综 黑洞 核能级密度 T模型 费米气体 实验数据 Nuclear level density Entropy Single neutron hole Microcanonical ensemble
  • 相关文献

参考文献13

  • 1Razavi R. Role of neutrons and protons in entropy, spin cut off parameters, and moments of inertia. Phys Rev C, 2013, 88: 014316. DOI: 10.1103/PhysRevC.88.014316.
  • 2Razavi R, Behkami A N and Dehghani V. Pairing phase transition and thermodynamical quantities in Sm- 148,Sm-149. Nucl Phys A, 2014, 930: 57-62. DOI: 10.1016/j.nuclphysa.2014.07.016.
  • 3Razavi R, Behkami A N, Mohammadi S, et al. Ratio of neutron and proton entropy excess in 121Sn compared to 122Sn. Phys Rev C, 2012, 86: 047303. DOI: 10.1103/PhysRevC.86,047303.
  • 4Bethe H A. An attempt to calculate the number of energy lev- els of a heavy nucleus. Phys Rev, 1936, 50: 332-341. DOI: 10.1103/PhysRev.50.332.
  • 5Gilbert A and Cameron A G W. A composite nuclear-level density formula with shell corrections. Can J Phys, 1965, 43: 1446-1496. DOI: 10.1139/p65-139.
  • 6Zheng H, Giuliani G and Bonasera A. Density and tem- perature of fermions and bosons from quantum fluctuations. Nucl Sci Tech, 2013, 24: 050512. DOI: 10.13538/j.1001- 8042/nst.2013.05.012.
  • 7Guo C C, Sun J and Zhang F S. Comparison between nuclear thermometers in central Xe+Sn collision. Nucl S ci Tech, 2013,24:050513. DOI: 10.13538/j. 1001-8042/nst.2013.05.013.
  • 8Ma Y G. Application of information theory in nuclear liquid gas phase transition. Phys Rev Lett, 1999, 83: 3617. DOI: 10.1103/PhysRevLett.83.3617.
  • 9Larsen A C, Ruud I E, Biirger A, et al. Transitional Y strength in Cd isotopes. Phys Rev C, 2013, 87: 014319. DOI: 10.1103/PhysRevC.87.014319.
  • 10Ericson T. A statistical analysis of excited nuclear states. Nucl Phys, 1959, 11: 481-491. DOI: 10.1016/0029-5582(59)90291- 3.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部