期刊文献+

石墨烯材料在水处理中的应用:传质机制与吸附特性 被引量:12

Applications of graphene-based materials in water treatment:mass transport and pollutants adsorption properties
原文传递
导出
摘要 石墨烯由于独特的单原子层二维结构和高比表面积等优异性能而被用作选择性分离膜和吸附剂,在水处理领域具有潜在的应用前景.本文综述了石墨烯纳米多孔膜和层状堆叠的氧化石墨烯渗透膜对气体、水及离子的传质行为.纳米多孔膜因其制备技术和不成熟的打孔技术等原因而具有一定局限性;而层状渗透膜由于制备方法简单、成本低、高通透性和高选择性等优点,在水净化领域具有广阔的应用空间.进一步综述了石墨烯吸附材料对水中重金属离子、染料和有机污染物的吸附行为,分析了石墨烯材料表面官能团与污染物的相互作用机理.最后展望了石墨烯材料在膜分离、海水淡化和污染物去除等环境应用中的机遇和挑战. Graphene-based nanomaterials have been used as separation membranes and adsorbents due to its unique two-dimensional single atomic layer structure, large specific surface area and excellent properties. In this paper, we first review gas, water and ions mass transport phenomenon through nanoporous graphene membranes and layered structures of graphene oxides. The development of nanoporous graphene has been limited by the current preparation technique and immature hole-drilling technology; while the laminated graphene oxide membranes have a great application potential in the field of water purification due to its simple, low-cost preparation methods, high permeability and selectivity. Then, we review the adsorption behaviors of heavy metal ions, dyes and organic pollutants in aqueous solution with graphene-based nanomaterials. The interaction mechanism between functional groups on graphene-based materials and pollutants has been analyzed. Finally, we prospect the opportunities and challenges of graphene-based nanomaterials in environmental applications, such as membrane separation, water desalination and pollutants removal.
出处 《科学通报》 EI CAS CSCD 北大核心 2015年第33期3196-3209,共14页 Chinese Science Bulletin
关键词 石墨烯 氧化石墨烯 传质 吸附 水处理 grapheme, graphene oxide, mass transport, adsorption, water treatment
  • 相关文献

参考文献80

  • 1Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes--the route toward applications. Science, 2002, 297:787-792.
  • 2Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321: 385-388.
  • 3Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett, 2008, 8:902-907.
  • 4Hou X, Guo W, Jiang L. Biomimetic smart nanopores and nanochannels. Chem Soc Rev, 2011, 40:2385-2401.
  • 5Bocquet L, Charlaix E. Nanofluidics, from bulk to interfaces. Chem Soc Rev, 2010, 39:1073-1095.
  • 6Zhao G, Wen T, Chen C, et al. Synthesis of graphene-based nanomaterials and their application in energy-related and environmen- tal-related areas. RSC Adv, 2012, 2:9286-9303.
  • 7Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes from graphene sheets. Nano Lett, 2008, 8:2458-2462.
  • 8Du H, Li J, Zhang J, et al. Separation of hydrogen and nitrogen gases with porous graphene membrane. J Phys Chem C, 2011, 115: 23261-23266.
  • 9Sint K, Wang B, Kril P. Selective ion passage through functionalized graphene nanopores. J Am Chem Soc, 2008, 130:16448-16449.
  • 10Cohen-Tanugi D, Grossman J C. Water desalination across nanoporous graphene. Nano Lett, 2012, 12:3602-3608.

同被引文献101

引证文献12

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部