期刊文献+

富锂锰基层状正极材料0.6Li[Li_(1/3)Mn_(2/3)]O_2·0.4LiNi_xMn_yCo_(1-x-y)O_2(x<0.6,y>0)的制备及性能研究 被引量:3

Preparation and Performance of Lithium-Rich Manganese Layered Materials 0.6Li[Li_(1/3)Mn_(2/3)]O_2·0.4LiNi_xMn_yCo_(1-x-y)O_2(x<0.6, y > 0)
下载PDF
导出
摘要 采用碳酸盐共沉淀法合成出前驱体,然后通过高温固相法制备了富锂锰基材料0.6Li[Li1/3Mn2/3]O2·0.4Li NixMnyCo1-x-yO2(x〈0.6,y〉0).使用扫描电镜(SEM)、X射线衍射(XRD)以及电化学方法等手段进行了表征.高温原位XRD测试结果表明,随着温度和Ni含量增加,材料的晶胞参数发生较大变化,温度达800 o C时,高Ni组成的材料阳离子混排现象严重,并伴有尖晶石相生成.电性能测试结果表明,在充放电电压为2.0~4.6 V、电流密度20m A·g-1条件下,低Ni含量材料表现出较好的电化学性能,首周放电容量达260.1 m Ah·g-1,首次效率为83.2%,经过50次循环后放电容量保持率高达99.7%,且在电池循环过程中,放电电压平台下降较少. Lithium-rich manganese based cathode materials .6Li[Li1/3Mn2/3]O2.0.4LiNixMnyCO1-x-yO2(x 〈 0.6, y 〉 0) were syn- thesized by carbonate co-precipitation and high temperature solid-state reaction. The structures and morphologies of the as-prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM). The results of high temperature in-situ XRD test show that the lattice parameters change significantly with increasing temperature and Ni content. The cation mixing gets serious and the spinel phase appears in the high Ni content samples when the temperature is up to 800 ℃. Under voltages ranging from 2.0 to 4.6 V, the lower Ni content sample has the highest discharge capacity of 260.1 mAh. g.l (the initial coulombic efficiency of 83.2%) at current density of 20 mA.g-1, and the discharge capacity retention is up to 99.7% with the relatively smaller voltage de- cay after 50 cycles.
出处 《电化学》 CAS CSCD 北大核心 2015年第5期480-487,共8页 Journal of Electrochemistry
基金 北京矿冶研究总院课题(No.02-926)资助
关键词 共沉淀法 富锂锰基材料 原位XRD 阳离子混排 carbonate co-precipitation method lithium-rich manganese based cathode materials in-situ X-ray diffraction cationmixing
  • 相关文献

参考文献2

二级参考文献17

  • 1黄可龙,李永坤,刘素琴,王洪恩,胡卫国,黄慧丽.球形锰酸锂的制备及高温性能研究[J].功能材料,2007,38(10):1635-1637. 被引量:9
  • 2Chang Z R, Chen ZJ, W u F, et al. Preparation of Li (Nil/ COl/3 Mn1/3) O2 by spherical Nil/3 COl/3 Mnl/3 DOH at a low temperature LJ J.Journal ot rower Sources , ZOOiS, 185(2): 1408-1414.
  • 3Pasquier A D, Huang C C, Spitler T. Nano Li,Ti5DI2- Li Mn, 04 batteries with high power capability, improved cycle-life[]].Journal of Power Sources, 2009, 186 (2): 508-514.
  • 4WU F, Wang M, Su Y F, et al. A novel layered material of LiNio.32 Mn. 33 Coo. 33 Al. 0102 for advanced lithium-ion batteries[J].Journal of Power Sources, 2010, 195 (9): 2900-2904.
  • 5Nien Y H, CareyJ R, ChenJ S. Physical and electrochemical properties of LiFeP04/C composite cathode prepared from various polymer-containing precusors[J]Journal of Power Sources, 2009, 193(2): 822-827.
  • 6Ammundsen B, DesilvestroJ, Groutso T, et al. Formation and structural properties of layered Li Mnf), cathode materials[J].Journal of the Electrochemical Society, 2000,147(11):4078-4082.
  • 7KimJ M, Tsuruta S, Kumagai N. Electrochemcial properties of Li[Cox Lio/3-xI3) Mn(2/3-xl3)JO, (Oxl) solid solutions prepared by poly-vinyl alcohol (PVA) method[J]. Electrochemistry Communications, 2007, 9(1): 103-108.
  • 8Huang X K, Zhang Q S, Chang H T, et al. H ydrothermal synthesis of nanosized LiMnO,-Li2 Mn03 compounds and their electrochemical performances[J].Journal of the Electrochemical Society, 2009, 156(3): A162-A168.
  • 9Lee D K, Park S H, Amineb K, et al. High capacity Li[Lio.2 Ni., 2 Mn 6J D, cathode materials via a carbonate coprecipitation method[J].Journal of Power Sources, 2006,162(2): 1346-1350.
  • 10KimJ S,Johnson C S, VaugheyJ T, et al. Electrochemical and structural properties of x Liz M 03 (Ix) LrMn. 5 Ni. 5 O2 electrodes for lithium batteries (M = Ti, Mn, ZrOxO. 3)[J]. Chemistry of Materials, 2004, 16(10): 1996-2006.

共引文献5

同被引文献7

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部