期刊文献+

Pd/石墨烯/玻碳电极检测4-氯酚污染物的研究 被引量:3

Application of Pd/Graphene Modified Electrode in the Detection of 4-Chlorophenol
下载PDF
导出
摘要 采用改进的Hummers法和硼氢化钠还原法制备Pd/石墨烯催化剂,并采用XRD、SEM、XPS、TEM等技术对其进行表征.将该催化剂修饰于玻碳电极表面,制备出Pd/石墨烯/玻碳电极,使用循环伏安法研究了检测4-氯酚的最佳工作条件.研究结果表明,所得石墨烯表面平整光滑,以零价态存在的Pd纳米颗粒均匀分散到石墨烯上,平均粒径为(6.5±0.05)nm.检测4-氯酚的最佳支持电解质为0.1 mol·L-1、p H 6.8的磷酸-磷酸钠缓冲溶液(PBS),峰电流与扫描速率的平方根呈良好的线性关系(R2=0.992),该电极的线性范围为1~100μmol·L-1(R2=0.967),检测限为0.57μmol·L-1(S/N=3),且具有良好的重现性和稳定性.本文所研制的Pd/石墨烯/玻碳电极具有较高的催化活性,提供了一种简便快捷、重现性好的检测4-氯酚的方法. The Pd/graphene composites were synthesized by a modified Hummers method and Na BH4 reduction process, and then were characterized using XRD, SEM, XPS, and TEM. The Pd/graphene modified glassy carbon electrode(Pd/graphene/GCE)was prepared based on this method. Cyclic voltammetry was used to study the optimum operation conditions for the 4-chlorophenol detection. It was shown that the surface of the graphene was smooth and Pd nanoparticles were uniformly dispersed on graphene.The average particle size was calculated to be 6.5 ± 0.05 nm. These nanoparticles exhibited high catalytic activity and sensitivity toward chlorophenols. PBS with a concentration of 0.1 mol·L-1at p H 6.8 was the best supporting electrolyte for the detection of4-chlorophenol. Peak current and the square root of the scan rate were in a good linear relationship( R2= 0.992). Using the Pd/graphene/GCE analytical performance with the linear range from 1 to 100 μmol·L-1(R2= 0.967), a detection limit of 0.57μmol·L-1was obtained. The Pd/graphene/GCE had a good reproducibility and stability. Therefore, the Pd/graphene/GCE showed a high catalytic activity, which provides a simple, quick and reproducible method for the detection of 4-chlorophenol.
出处 《电化学》 CAS CSCD 北大核心 2015年第5期488-495,共8页 Journal of Electrochemistry
基金 北京市大学生科学研究与创业行动计划项目(No.S201410022103) 国家自然科学基金项目(No.51278053 No.21373032)资助
关键词 电化学检测 氯酚 Pd/石墨烯 修饰电极 electrochemical detection chlorophenol Pd/graphene modified electrode
  • 相关文献

参考文献20

  • 1Kringstad K P, Lindstram K. Spent liquors from pulp bleaching[J]. Environmental Science & Technology, 1984, 18(8): 236-248.
  • 2Muna G W, Tasheva N, Swain G M. Electro-oxidation and amperometric detection of chlorinated phenols at boron- doped diamond electrodes: A comparison of microcrys-talline and nanocrystalline thin films[J]. Environmental Science & Technology, 2004, 38(13): 3674-3682.
  • 3Erkan S, Filiz B D. Effect of biogenic substrate concentra-tion on the performance of sequencing batch reactor treat-ing 4-CP and 2,4-DCP mixtures[J]. Journal of Hazardous Materials, 2006, 128(2/3): 258-264.
  • 4Li X Y, Xue A F, Chen H, et al. Low-density sol- vent-based dispersive liquid-liquid micro extraction com-bined with single-drop microextraction for the fast deter- mination of chlorophenols in environmental water samples by high performance liquid chromatography-ultraviolet detection[J]. Journal of Chromatography A, 2013, 1280: 9-15.
  • 5Masoumeh H, Mahsa M. Application of principal compo-nent-artificial neural network models for simultaneous de-termination of phenolic compounds by a kinetic spec- trophotometric method[J]. Journal of Hazardous Materials, 2008, 157(1): 161-169.
  • 6Xu Q, Li X J, Zhou Y E, et al. An enzymatic amplified system for the detection of 2, 4-dichlorophenol based on graphene membrane modified electrode[J]. Analytical Me-thods, 2012,4(10): 3429-3435.
  • 7GeH (葛慧),Ling BH (李保华),Sun ZR (孙治荣).Re-search progress in removing chlorinated organic com- pounds by electrochemical process[J]. Environmental Pro-tection of Chemical Industry(ftXJf ft), 2008, 28(4): 317- 322.
  • 8AVang L(王亮),Lv Y Q(吕元琦),Yang Z B(袁倬斌),et al. Levodopa in single wall carbon nanotubes modified elec-trode electrochemical behavior[J]. 分析试验室,2006, 23(6): 13-15.
  • 9宋爽,林莉莉,何志桥,陈建孟.Pd-Ni双金属复合物修饰泡沫镍电极对水中4-氯酚的电化学脱氯[J].化工学报,2009,60(6):1554-1559. 被引量:6
  • 10张勤伟,李运勇,沈培康.三维多级孔类石墨烯载三氧化二铁锂离子电池负极材料[J].电化学,2015,21(1):66-71. 被引量:6

二级参考文献33

  • 1周红艺,徐新华,汪大翚.Pd/Fe双金属对水中m-二氯苯的催化脱氯[J].化工学报,2004,55(11):1912-1915. 被引量:20
  • 2ZHANG Wei-hua,QUAN Xie,ZHANG Zhuo-yong.Catalytic reductive dechlorination of p-chlorophenol in water using Ni/Fe nanoscale particles[J].Journal of Environmental Sciences,2007,19(3):362-366. 被引量:18
  • 3Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
  • 4Zhu X, Zhu Y, Murali S, et al. Nanostructured reduced graphene oxide/Fe203 composite as a high-performance anode material for lithium ion batteries[J]. ACS Nano, 2011, 5(4): 3333-3338.
  • 5Buqa H,Goers D, Holzapfel M, et al. High rate capability of graphite negative electrodes for lithium-ion batteries [J]. Journal of The Electrochemical Society, 2005, 152 (2): A474-A481.
  • 6Aricd A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature materials, 2005,4(5): 366-377.
  • 7Jang B, Park M, Chae O B,et al. Direct synthesis of self-assembled ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes [J]. Journal of the American Chemical Society, 2012, 134(36): 15010-15015.
  • 8Kwon K A,Lim H S, Sun Y K, et al. a -Fe203 submicron spheres with hollow and macroporous structures as high-performance anode materials for lithium ion batteries [J]. The Journal of Physical Chemistry C, 2014,118(6): 2897-2907.
  • 9Zhao B, Liu R, Cai X, et al. Nanorod-like Fe203/graphene composite as a high-performance anode material for lithium ion batteries [J]. Journal of Applied Electrochemistry2014, 44(1): 53-60.
  • 10Luo J, Liu J, Zeng Z,et al. Three-dimensional graphene foam supported Fe304 lithium battery anodes with long cycle life and high rate capability[J]. Nano letters, 2013, 13(12): 6136-6143.

共引文献10

同被引文献11

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部