期刊文献+

基于向量空间不同访问群体的门限方案 被引量:3

Threshold scheme for different access clusters based on vector space
下载PDF
导出
摘要 针对具有不同访问权限的群体的秘密共享是难于处理的问题,在有限域上引入内积向量空间的概念,研究子空间的直和及其正交补结构中基向量的组成形式;利用Gram-Schmidt算法和最近向量定理设计了一个基于向量空间的(s+r,m+n)门限方案,并将此方案推广到有限多个不同访问群体的情形。结果表明,基于向量空间的不同访问群体的门限方案满足秘密共享的重构和安全性要求,是一个完备的秘密共享方案。 Aiming at that the secret sharing of clusters with different access right was difficult problem, the concept of inner product vector space over the finite field was introduced. Then the direct sum of subspaces and the organization lay- out of basis vector for its orthogonal complement space were researched. A (s+r, m+n)-threshold scheme based on vector space was designed by using the Gram-Sehmidt algorithm and the closest vector theorem. Furthermore, this seheme was popularized to the situation with finite numbers of different access clusters. The results reveal that this threshold scheme for different access clusters based on vector space is proved to satisfy the requirement of reconstruction and security feature as a perfect secret sharing scheme.
作者 李滨
出处 《通信学报》 EI CSCD 北大核心 2015年第11期67-72,共6页 Journal on Communications
基金 国家自然科学基金资助项目(61103114) 四川省科研基金资助项目(12ZB276)~~
关键词 向量空间 子空间的直和 不同访问群体 秘密共享 Gram-Schmidt算法 vector space direct sum of subspaces different access clusters secret sharing Gram-Schmidt algorithm
  • 相关文献

参考文献16

  • 1SHAMIR A. How to share a secret[J]. Communications of the ACM,1979’ 22(11):612-613.
  • 2BLAKLEY G R. Safeguarding cryptographic keys[A]. Proceedings ofthe National Computer Conference[C]. New York, USA, 1979.313-317.
  • 3SHAO J. Efficient verifiable multi-secret sharing scheme based onhash function[J]. Information Sciences, 2014,278(2):104-109.
  • 4WU T Y,TSENG Y M. Publicly verifiable multi-secret sharing schemefrom bilinear pairings[J], IET Information Security, 2013, 7(3): 239-246.
  • 5HU C, LIAO X, CHENG X. Verifiable multi-secret sharing based onLFSR sequences[J]. Theoretical Computer Science, 2012,445(1): 52-62.
  • 6SPIEZ S, URBANOWICZ J, ZABLOCKI A. On constructing privi-leged coalitions in Shamir’s type scheme [J]. Finite Fields and TheirApplication, 2013, 19(1):73-85.
  • 7SPIEZ S, TIMOFEEV A, URBANOWICZ J. Non-admissible tracks inShamir’s scheme [J]. Finite Fields and Their Application, 2011,17(4):329-342.
  • 8BOLOORCHI A T,SAMADZADEH M H,CHEN T. Symmetricthreshold multipath (STM): an online symmetric key managementscheme[J]. Information Sciences, 2014, 268(6):489-504.
  • 9LIN H Y, YEH Y S. Dynamic multi-secret sharing scheme[J]. InternationalJournal of Contemporary Mathematical Sciences, 2008,3(1): 37-42.
  • 10KOJOUMIAN M,STINSON D R. On dealer-free dynamic thresholdschemes [J]. Advances in Mathematics of Communications, 2013, 7(1):39-56.

二级参考文献13

  • 1karnin E D,Green J W,Hellman M E.On Sharing Secret Systems [J].IEEE Transactions on Information Theory,1983,29(1):35-41.
  • 2Rifa-Coma J.How to Avoid the Cheaters Succeeding in the Key Sharing Scheme.Designs [J].Codes and Cryptography,1993,3(3):221-228.
  • 3Benaloh J C.Secret Sharing Hornomorphisrns [J].Keeping Shares of a Secret,Advances in Cryptology-CRYPTO'86,1987:251 - 260.
  • 4Shamir A.How to Share a Secret[J].Communications of theACM,1979,22(11):612-613.
  • 5Blakley G R.Safeguarding Cryptographic Keys.In:Proceedings of the National Computer Conference [J].AFIPS,1979,48:313-317.
  • 6Stinson D R.Cryptography:Theory and Practice [M].Boca Raton:CRC Press,Inc,1995.
  • 7Ito M,Saito A.T.Nishizeki Secret Sharing Scheme Realizing General Access Structure [M].Proc.IEEE Global Telecommunication Conf.Globecom 87,1987,99 - 102.
  • 8Feldman P.A ractical Scheme for Non-interactive Verifiable Secret Sharing [J].In:Proc.28th IEEE Symposium on Foundations of Computer Sciences (FOCS'87).Los Angeles:IEEE Computer Society,1987,427- 437.
  • 9Pedersen T P.No-interactive and Information-theoretic Secure Verifiable Secret Sharing [J].In:Feigenbaum J,et al.Advances in Cryptology-Crypto'91 Proceedings,LNCS 576.Berlin:Springer-Verlag,1992,129-140.
  • 10G. R. Blazkley, Safeguarding cryptographic keys, Proc. of the 1979 AFIPS National Computer Conference, 1979, 48: 313-317.

共引文献21

同被引文献21

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部