期刊文献+

基于功能纳米材料的蛋白激酶活性分析新方法 被引量:1

Novel protein kinase activity assays based on functional nanomaterials
原文传递
导出
摘要 蛋白激酶催化的蛋白质磷酸化是生物体内最普遍、最重要的翻译后修饰形式之一,磷酸化异常通常会引发包括癌症在内的多种疾病.而蛋白激酶作为细胞内信号转导通路的关键组成部分,参与调节细胞生长、代谢、分化及增殖等一系列重要的生理过程.因此发展激酶的高效特异的检测手段,对于生物化学基础研究、临床诊断以及药物开发均具有重要意义.近年来,随着纳米技术研究的逐步深入,越来越多的功能纳米材料被用于蛋白激酶传感器构建.纳米材料由于其优异的光、电、化学以及催化性质,在激酶传感的关键过程中发挥重要作用,被广泛用于信号产生及转化、传感界面构建以及生化信号放大,极大地提高了激酶生化分析的分析效能.本文简要概括了激酶活性分析中常用的分子识别手段和检测原理,进一步就纳米材料在激酶活性分析中的新方法进行了系统综述,并对未来激酶活性分析方法的发展进行了展望. Protein phosphorylation catalyzed by protein kinase is one of the most ubiquitous and important post-translational modification and aberrant phosphorylation is closely related with a variety of human diseases, especially cancer. As the critical component of intracellular signal pathways, protein kinases are involved in regulating a number of important physiological processes, such as cell growth, metabolism, differentiation, and proliferation. Therefore, developing potent and specific analytical methods of protein kinases are of great significance for biochemical fundamental research, disease diagnosis and treatment, and drug development. In recent years, the growing number of functional nanomaterials have been exploited in the development of protein kinase biosensors. Due to their unique optical, electrical, chemical, and catalytic properties, nanomaterials play crucial roles in several key processes in bio-sensing, such as signal generation and transduction, biosensing interface fabrication, as well as biochemical signal amplification, which greatly improves the analytical performance of kinase biosensors. This paper briefly summarizes the generally used molecular recognition mechanisms of kinase detections, then gives a systematic overview of the nanomaterials-based protein kinases assays classified by the different analytical techniques. Consequently, the future development of protein kinase biosensors is prospected.
出处 《中国科学:化学》 CAS CSCD 北大核心 2015年第11期1178-1193,共16页 SCIENTIA SINICA Chimica
基金 国家自然科学基金优秀青年科学基金(21222507)以及面上项目(21175036)资助
关键词 蛋白激酶 纳米材料 生物传感 比色 荧光 电化学 protein kinase nanomaterial biosensor colorimetry fluorescence electrochemistry
  • 相关文献

参考文献91

  • 1Uy R, Wold F. Post-translational covalent modification of proteins. Science, 1977, 198: 890-896.
  • 2Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science, 2002, 298: 1912-1934.
  • 3Adams JA. Kinetic and catalytic mechanisms of protein kinases. Chem Rev, 2001, 101: 2271-2290.
  • 4Johnson LN, Lewis RJ. Structural basis for control by phosphorylation. Chem Rev, 2001, 101: 2209-2242.
  • 5Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science,2002, 298: 1912-1934.
  • 6Hastie CJ, McLauchlan HJ, Cohen P. Assay of protein kinases using radiolabeled atp: a protocol. Nat Protoc, 2006, 1: 968-971.
  • 7Liu X, Li Y, Xu XH, Li P, Nie Z, Huang Y, Yao SZ. Nanomaterial-based tools for protein kinase bioanalysis. TrAC Trends Anal Chem, 2014, 58: 40-53.
  • 8Rosi L, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev, 2005, 105: 1547-1562.
  • 9Saha K, Agasti SS, Kim C, Li XN, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev, 2012, 112: 2739-2779.
  • 10Futreal PA, Kasprzyk A, Birney E, Mullikin JC, Wooster R, Stratton MR. Cancer and genomics. Nature, 2001, 409: 850-852.

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部