期刊文献+

调和Bergman空间上弱局部化算子的代数

Algebra of the weakly localized operators on harmonic Bergman spaces
原文传递
导出
摘要 本文在Rn中开单位球的调和Bergman空间bp上引入一类(p,δ)-弱局部化算子,这类算子构成一个代数并包含了bp上的Toeplitz代数.本文的主要结果还给出这类算子的一个紧性判据,即T为bp上的紧算子当且仅当存在k>0,使得lim sup|x|→1-supy∈D(x,k)|<T r(p)y,r(p′)x>|=0. In this note, we introduce a class of the so-called weakly localized operators on the harmonic Bergman spaces, which forms an algebra and contains all Toeplitz operators with bounded symbols. Our main result gives a criterion of the compactness for this class of operators, i.e., T is a compact operator on bpif and only if there exists k 0, such that lim sup|x|→1-supy∈D(x,k)|T r(p)y, r(p′)x| = 0.
出处 《中国科学:数学》 CSCD 北大核心 2015年第11期1881-1892,共12页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11171318和11471301)资助项目
关键词 调和Bergman空间 (p δ)-弱局部化算子 TOEPLITZ算子 harmonic Bergman space weakly localized operators Toeplitz operators
  • 相关文献

参考文献12

  • 1Axler S, Bourdon P, Ramey W. Harmonic Function Theory. 2nd ed. Graduate Texts in Mathematics 137. New York: Springer-Verlag, 2001.
  • 2Xia J, Zheng D. Localization and Berezin transform on the Fock space. J Funct Anal, 2013, 264: 97-117.
  • 3Isralowitz J, Mitkovski M, Wick B D. Localization and compactness in Bergman and Fock spaces. ArXiv:1306.0316v4, 2013.
  • 4Suárez D. The essential norm of operators in the Toeplitz algebra on Ap(Bn). Indiana Univ Math J, 2007, 56: 2185-2232.
  • 5Ahlfors L V. M?bius Transformations in Several Dimensions. Http://ir.nmu.org.ua/handle/123456789/137558, 1981.
  • 6Andrews G, Askey R, Roy R. Special Functions. Cambridge: Cambridge University Press, 1999.
  • 7Ren G. Harmonic Bergman spaces with small exponents in the unit ball. Collect Math, 2002, 53: 83-98.
  • 8Liu C, Peng L. Boundary regularity in the Dirichlet problem for the invariant Laplacian △r on the unit real ball. Proc Amer Math Soc, 2004, 132: 3259-3268.
  • 9Whittaker E, Watson G. A Course of Modern Analysis. Cambridge: Cambridge University Press, 1988.
  • 10Zhu K. Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226. New York: SpringerVerlag, 2005.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部