期刊文献+

严格对角占优M-矩阵的逆矩阵的无穷大范数的新上界 被引量:5

New upper bounds for the infinity norm of inverse matrix of strictly diagonally dominant M-matrix
下载PDF
导出
摘要 给出了严格对角占优M-矩阵的逆矩阵的无穷大范数上界新的估计式,进而给出严格对角占优M-矩阵的最小特征值下界的估计式.新估计式改进了已有文献的结果. Some new upper bounds of the infinity norm of inverse matrix of a strictly diagonally dominant M-matrix are presented. Furthermore, the lower bound of the minimum eigenvalue of the M-matrix is given. These bounds can improve some existing results.
出处 《纯粹数学与应用数学》 2015年第6期559-566,共8页 Pure and Applied Mathematics
基金 国家自然科学基金(11511140 11361074) 云南省科技厅应用基础研究基金(2013FD002) 贵州省科学技术基金([2015]2073) 贵州民族大学科研基金(15XRY004)
关键词 M-矩阵 对角占优 上界 最小特征值 M-matrix,diagonal dominance,upper bound,minimum eigenvalue
  • 相关文献

参考文献7

  • 1Varah J M. A lower bound for the smallest singular value of a matrix [J]. Linear Algebra Appl., 1975,11:3-5.
  • 2Shivakumar P N, Willoams J J, Ye Qiang, et al. On two-sided bounds related to weakly diagonally dominantM-matrices with application to digital circuit Dynamics [J]. SIAM J. Matrix Anal. Appl., 1996,17(2):298-312.
  • 3Cheng Guanghui, Hang Tingzhu. An upper bound for ∥A--1∥1 of strictly diagonally dominant M-matri-ces [J]. Linear Algebra Appl., 2007,426:667-673.
  • 4Wang Pign. An upper bound for ∥A--1∥1 of strictly diagonally dominant M-matrices [J]. Linear AlgebraAppl., 2009,431:511-517.
  • 5潘淑珍,陈神灿.弱链对角占优矩阵‖A^(-1)‖_∞的上界估计[J].福州大学学报(自然科学版),2012,40(3):281-284. 被引量:12
  • 6Huang Tingzhu, Zhu Yan. Estimation of ∥A--1∥1 for weakly chained diagonally dominant M-matrices [J].Linear Algebra Appl., 2010,432:670-677.
  • 7Li Yaotang, Wang Feng, Li Chaoqian, et al. Some new bounds for the minimum eigenvalue of the Hadamardproduct of an M-matrix and an inverse M-matrix [J]. J. Inequal. Appl., 2013,480:1-8.

二级参考文献5

  • 1Shivakumar P N, Williams Joseph J, Ye Qiang, et al. On two - sided bounds related to weakly diagonally dominant M - matrices with application to digital circuit dynamics[J]. SIAM J Matrix Anal Appl, 1996, 17(2) : 289 -312.
  • 2Cheng G H, Huang T Z. An upper bound for IIA-1 II. of strictly diagonally dominant M - matrices[J]. Linear Algebra and Its Applications [ J ]. 2007, 426 : 667 - 673.
  • 3Berman A, Plemmons R J. Nonnegative matrices in the mathematical sciences[ M]. New York: Academic Press. 1979.
  • 4Li W. On nekrasov matrices [ J ]. Linear Algebra and Its Applications, 1998, 281:87 -96.
  • 5Shivkumar P N, Chew K H. A sufficient condition for nonvanishing of determinants [ J]. Proc Amer Math Soc, 1974, 43 (1) :63 - 66.

共引文献11

同被引文献25

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部