期刊文献+

一类非局部非线性扩散方程解的全局爆破 被引量:2

Global blow-up for a nonlocal nonlinear diffusion equation
下载PDF
导出
摘要 主要研究在Dirichlet边界条件或Neumann边界条件下的一类非局部非线性的扩散方程问题.在适当的假设下,证明解的存在性、唯一性、比较原则、以及解对初边值条件的连续依赖性,并就给定的初边值条件,证明解在有限时刻全局爆破. In this paper, we mainly study a nonlocal nonlinear diffusion equation with Dirichlet boundary conditions or Neumann boundary conditions. Under suitable hypotheses, we will prove existence, uniqueness and the validity of a comparison principle for solutions of these problems, as well as solutions of the problems depend continuously on initial and boundary data. Moreover we will prove that the solution globally blows up in finite time with a given initial and boundary datum.
出处 《纯粹数学与应用数学》 2015年第6期588-595,共8页 Pure and Applied Mathematics
基金 国家自然科学基金(11301419) 四川省教育厅重点项目(13ZA0010 14ZB0143) 西华师范大学大学生科技创新项目(42714081)
关键词 非局部扩散 DIRICHLET边界条件 NEUMANN边界条件 全局爆破 nonlocal diffusion,Neumann boundary condition,Dirichlet boundary condition,global blow-up elementary method,conjecture
  • 相关文献

参考文献14

  • 1Bogoya M. A nonlocal nonlinear diffusion equation in higher space dimensions [J]. Math. Anal. Appl.,2008,344:601-615.
  • 2Bogoya M. Blowing up boundary conditions for a nonlocal nonlinear diffusion equation in several spacedimensions [J]. Nonlinear Anal., 2010,72:143-150.
  • 3Fife P. Some Nonclassical Trends in Parabolic-like Evolution, in: Trends in Nonlinear Analysis [M]. Berlin:Springer, 2003.
  • 4Cortazar C, Elgueta M, Rossi J D. A nonlocal diffusion equation whose solution develops a free boundary [J].Ann. Henri Poincare, 2005,6(2):269-281.
  • 5Ignat L, Liviu I, Rossi J D. A nonlocal convection-diffusion equation [J]. Funct. Anal., 2007,251:399-437.
  • 6Ignta L, Liviu I, Rossi J D, et al. Decay estimates for nonlinear nonlocal diffusion problems in the wholespace [J]. Journal d′Analyse Math′ematique, 2014,122:375-401.
  • 7Ignat L, Rossi J D, Antolin A S. Lower and upper bounds for the first eigenvalue of nonlocal diffusionproblems in the whole space [J]. Differential Equations, 2012,252:6429-6447.
  • 8Li Z P, Mu C L. Global existence and blow-up analysis for a nonlinear diffusion equation with innerabsorportion and boundary flux [J]. Dynamical Systems, 26(2):147-159.
  • 9Li Z P, Mu C L. Critical exponents and blow-up rate for a nonlinear diffusion equation with logarithmicboundary flux [J]. Nonlinear Anal., 2010,73:933-939.
  • 10Deng K, Levine H A, The role of critical exponents in blow-up theorems: the sequel [J]. Math. Anal. Appl.,2000,243:85-126.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部