期刊文献+

基于最小方差估计的图像低秩去噪 被引量:9

Low-rank Image Denoising Based on Minimum Variance Estimator
下载PDF
导出
摘要 自然图像通常表现出一定的自相似性,这种相似性意味着由相似图像块所构成的图像矩阵具有低秩性.基于图像的这种低秩性和最小方差估计理论,提出一种有效的迭代去噪方法.该方法通过构造图像相似块矩阵将图像去噪问题转化为低秩矩阵估计问题,并由最小方差估计理论导出低秩矩阵的估计值;在此基础上,对图像块的估计值进行加权平均即可重构出去噪后的图像;针对少量噪声残留问题,将去噪方法与反向投影方法相结合实现图像的迭代去噪,进一步抑制图像中残留的噪声.实验结果表明,采用文中方法产生的去噪图像不仅具有较高的峰值信噪比和特征相似度均值,而且具有很好的视觉效果. Natural images always exhibit a certain nonlocal self-similarity property, which implies that the patch matrix formed by similar image patches is low-rank. Based on the low-rank approximation and the minimum variance estimate theory, this paper proposes an efficient iterative denoising method. The proposed method trans-lates the image denoising issue into the estimate of some low-rank matrices by constructing similar patch matrices. The minimum variance estimator is exploited to yield the estimates of these matrices, and a denoised image is achieved by aggregating all denoised image patches. In order to further reduce the residual noise in the denoised image, an iterative version of the proposed method based on back-projection process is introduced. Experimental results show that the proposed method obtains not only higher peak signal-to-noise ratio and feature structural si-milarity values but also better visual quality.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第12期2237-2246,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61202150 61202151 61272245 61472220) 中国博士后科学基金(2013M531600) 山东省科技发展计划(2014GGX101037 2015GGX101004) 山东省高校优秀科研创新团队资助项目
关键词 图像去噪 奇异值分解 最小方差估计 低秩性 自相似性 image denoising singular value decomposition minimum variance estimate low-rank self-similarity
  • 相关文献

参考文献29

  • 1侯迎坤,刘明霞,杨德运.多级块匹配变换域滤波图像去噪[J].计算机辅助设计与图形学学报,2014,26(2):225-231. 被引量:7
  • 2夏菁,张彩明,张小峰,李雪梅.结合边缘局部信息的FCM抗噪图像分割算法[J].计算机辅助设计与图形学学报,2014,26(12):2203-2213. 被引量:14
  • 3YANG JingYu PENG YiGang XU WenLi DAI QiongHai.Ways to sparse representation:An overview[J].Science in China(Series F),2009,52(4):695-703. 被引量:15
  • 4Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactionson Information Theory, 1995, 41(3): 613-627.
  • 5Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding forimage denoising and compression[J]. IEEE Transactions onImage Processing, 2000, 9(9): 1532-1546.
  • 6.endur L, Selesnick I W. Bivariate shrinkage functions forwavelet-based denoising exploiting interscale dependency[J].IEEE Transactions on Signal Processing, 2002, 50(11): 2744-2756.
  • 7Guo Q, Zhang C M. A noise reduction approach based on Stein'sunbiased risk estimate[J]. ScienceAsia, 2012, 38(2): 207-211.
  • 8Starck J L, Candes E J, Donoho D L. The curvelet transform forimage denoising[J]. IEEE Transactions on Image Processing,2002, 11(6): 670-684.
  • 9Guo Q, Yu S N. Image denoising using a multivariate shrinkagefunction in the curvelet domain[J]. IEICE Electronics Express,2010, 7(3): 126-131.
  • 10SHEN XiaoHong,WANG Kai,GUO Qiang.Local thresholding with adaptive window shrinkage in the contourlet domain for image denoising[J].Science China(Information Sciences),2013,56(9):61-69. 被引量:6

二级参考文献43

  • 1ZHANG Chunmei,YIN Zhongke,CHEN Xiangdong,XIAO Mingxia.Signal overcomplete representation and sparse decomposition based on redundant dictionaries[J].Chinese Science Bulletin,2005,50(23):2672-2677. 被引量:14
  • 2李敏,冯象初.基于总变分和各向异性扩散方程的图像恢复模型[J].西安电子科技大学学报,2006,33(5):759-762. 被引量:10
  • 3Cho D, Bui T D. Multivariate statistical modeling for image denoising using wavelet transforms. Signal Processing: Image Communication, 2005, 20(1): 77-89.
  • 4Wang Z, Bovik A C. Mean squared error: love it or leave it? a new look at signal fidelity measures. IEEE Signal Processing Magazine, 2009, 26(1): 98-117.
  • 5Chang S, Yu B, Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Transactions on Image Processing, 2000, 9(9): 1522-1531.
  • 6Shi F, Selesnick I W. An elliptically contoured exponential mixture model for wavelet based image denoising. Applied and Computational Harmonic Analysis, 2007, 23(1): 131-151.
  • 7Donoho D L. De-noising by soft-thresholding. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
  • 8Sendur L, Selesnick I W. Bivariate shrinkage function for wavelet-based denoising exploiting interscale dependency. IEEE Transactions on Signal Processing, 2002, 50(11): 2744-2756.
  • 9Candes E J, Donoho D L. New tight frames of curvelets and optimal representations of object with piecewise C^2 singularities. Communications on Pure and Applied Mathematics, 2004, 57(2): 219-266.
  • 10Candes E J, Demanet L, Donoho D L, Ying L. Fast discrete curvelet transforms. Multiscale Modeling and Simulation, 2006, 5(3): 861-899.

共引文献54

同被引文献48

引证文献9

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部