期刊文献+

曲面迭代的混沌特性及其在人脸识别中的应用 被引量:6

Image Chaotic Characteristics and Application in Face Recognition
下载PDF
导出
摘要 为探讨混沌理论在图像应用中的更多可能性,减小图像识别过程中因局部动态变化等因素对识别率的影响,提出一种基于混沌迭代的图像特征构造方法.首先利用图像与辅助函数构造离散动力系统,在二维空间中使用Euler法进行迭代,得到近似吸引子作为图像的特征点阵;然后对该特征点阵进行Radon变换,将其投影到一维空间中,通过计算相关系数等方法对人脸图像进行识别;给出一种灰度自适应方法,在图像识别过程中通过调整灰度对比度来提高吸引子生成质量.实验结果表明,利用该单一特征的初步识别方法在Yalefaces人脸数据库中的识别率为70.91%;改进灰度自适应等方法后识别准确率达到87.33%,可得到较稳定的识别效果;另外,通过绘制出一些不同类图像的吸引子,说明图像不同其吸引子形状也不同. To explore the widely possibilities of chaos theory in image application, this paper investigates a new image feature construction method based on chaos iteration to reduce the impact of local dynamic changes in the image recognition. The discrete dynamical system is constructed by the image and the auxil-iary function. And the approximate attractors which are considered as the image feature lattice got from the discrete dynamical system through Euler iteration. The paper achieves the face recognition by calculating the correlation coefficient of the feature lattice which is projected into the one-dimensional space according to the Radon transform. A gray-adaptive method is proposed to improve the quality of the attractors by adjust-ing the gray contrast. Experiments show that with the proposed improved gray adaptive method, the identi-fication rate of single feature in the Yalefaces rises from 70.91% to 87.33%. In addition, the experiment in-dicates that the shapes of the three-dimensional attractors vary with the image sequence.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第12期2264-2271,共8页 Journal of Computer-Aided Design & Computer Graphics
关键词 离散动力系统 混沌吸引子 图像特征 人脸识别 discrete dynamical system chaos attractors image features face recognition
  • 相关文献

参考文献15

  • 1Tung T, Matsuyama T. Topology dictionary for 3D video understanding[J]. IEEE Transaction on Pattern Analysis and MachineIntelligence, 2012, 34(8): 1645-1657.
  • 2Schwartz W R, Guo H M, Choi J, et al. Face identification us ing large feature sets[J]. IEEE Transaction on Image Processing,2012, 21(4): 2245-2255.
  • 3Diago L, Kitaoka T, Hagiwara I, et al. Neuro-fuzzy quantificationof personal perceptions of facial images based on a limiteddata set[J]. IEEE Transactions on Neural Networks, 2011,22(12): 2422-2434.
  • 4Lee C S, Elgammal A. Non-linear factorised dynamic shapeand appearance models for facial expression analysis andtracking[J]. IET Computer Vision, 2012, 6(6): 567-580.
  • 5Li R, Tian T P, Sclaroff S. Divide, conquer and coordinate:globally coordinated switching linear dynamical system[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2012, 34(4): 654-669.
  • 6Huang H, He H T. Super-resolution method for face recognitionusing nonlinear mappings on coherent features[J]. IEEE Transactionon Neural Networks, 2011, 22(1): 121-130.
  • 7Mohammadzade H, Hatzinakos D. Iterative closest normalpoint for 3D face recognition[J]. IEEE Transaction on PatternAnalysis and Machine Intelligence, 2013, 35(2): 381-397.
  • 8于万波,周洋.空间单位区域双二次有理贝赛尔曲面混沌特性研究[J].物理学报,2013,62(22):25-35. 被引量:2
  • 9于万波,赵斌.曲面迭代混沌特性研究[J].物理学报,2014,63(12):31-41. 被引量:7
  • 10于万波.截面的几何形状决定三维函数的混沌特性[J].物理学报,2014,63(12):22-30. 被引量:7

二级参考文献30

  • 1于万波,魏小鹏.一个小波函数指数参数变化的分岔现象[J].物理学报,2006,55(8):3969-3973. 被引量:9
  • 2Madhok V, Riofrío C A, Ghose S, Deutsch I H 2014 Phys. Rev. Lett. 112 014102.
  • 3Wang X Y, Li F P 2009 Nonlinear Analysis: Theor. 70 830.
  • 4Secelean N A 2014 J. Math. Appl. 410 847.
  • 5Shi Y M, Chen G 2004 Chaos Slitons Fract. 22 555.
  • 6Reza M S 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 3857.
  • 7Feng J J, Zhang Q C, Wang W, Hao S Y 2013 Chin. Phys. B 22 090503.
  • 8于万波, 杨灵芝 .2013. 物理学报 62 020503.
  • 9于万波, 周洋 .2013. 物理学报 62 220501.
  • 10于万波, 杨灵芝 .2014. 计算机工程 39 5.

共引文献9

同被引文献22

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部