期刊文献+

断层作用下管道应变计算有限元模型对比研究 被引量:8

Comparative Study on the FEM Models of Buried Pipeline under Fault Movement
下载PDF
导出
摘要 对于穿越活动断层的管道通常采用基于应变的方法进行抗震设计校核。为此,建立管单元、固定边界壳单元、管壳耦合和等效弹簧边界等4种有限元模型,从结果差异性和模型计算效率2方面进行对比分析,得到如下结论:当以不同角度穿越不同位错量走滑断层时,管道4种有限元模型最大轴向应变和最小轴向应变较接近,其中基于壳单元模型计算结果稍保守;在保证计算结果准确性的前提下,采用管壳耦合模型或等效弹簧边界模型可大幅降低计算成本,后者在特殊情况(断层位错量较大)时需加长管段分析长度以保证等效弹簧边界适用性;管单元模型具有最优计算效率,适合大批量计算时使用;管壳耦合模型具有较高计算效率、较广适用性以及较保守的计算结果,适合断层区管道抗震设计时使用。 For seismic design verification of pipelines crossing active fault, methods based on strain are usu-ally taken. The pipe-element model, fixed boundary shell-element model, pipe-shell coupling model and equiva-lent-spring-boundary model have been established. Comparative analyses on result difference and model calculation efficiency have been conducted, and the following conclusions have been drawn: the four kinds of finite element models of pipeline crossing the fault with different angles and different dislocation have close maximum axial strain and minimum axial strain. The result based on shell element model is slightly conserved. On the premise of ensuring the accuracy of the results, the use of pipe-shell coupling model or equivalent-spring-boundary model can signifi-cantly reduce computing costs. In special circumstances ( with a large fault dislocation ) , extension pipe length is necessary to ensure the applicability of equivalent-spring-boundary model. The pipe element model has the best computational efficiency, which is preferable for mass calculation. The pipe-shell coupling model has high computa-tional efficiency, wider applicability and more conservative calculation result, which is suitable for seismic design of the pipeline in fault zone.
出处 《石油机械》 2015年第12期109-113,共5页 China Petroleum Machinery
基金 中石化石油工程设计有限公司科学研究项目"基于应变设计技术研究"(2013406)
关键词 断层 位错量 土弹簧 轴向应变 有限元模型 fault dislocation amount soil spring axial strain finite element model
  • 相关文献

参考文献16

  • 1CSA Z662-2007 Oil and gas pipeline systems [S] .2007.
  • 2American lifelines alliance. Guideline for the design ofburied steel pipeline [S] . 2001.
  • 3GB 50470-2008 油气输送管道线路工程抗震技术规范[S] . 2008.
  • 4张宏,崔红升.基于应变的管道强度设计方法的适用性[J].油气储运,2012,31(12):952-954. 被引量:28
  • 5Tohidi R Z. Shakib H. Response of steel buried pipelineto the three-dimensional fault movements [J] . Journalof Science and Technology, 2003, 14: 1127-1135.
  • 6Joshi S, Prashant A, Deb A, et al. Analysis of buriedpipelines subjected to reverse fault motion [J] . SoilDynamics & Earthquake Engineering, 2011, 31 (7):930-940.
  • 7刘学杰,孙绍平.地下管道穿越断层的应变设计方法[J].特种结构,2005,22(2):81-85. 被引量:30
  • 8刘啸奔,陈严飞,张宏,夏梦莹,郑伟,张振永,梁乐才,陈金孝.跨断层区X80钢管道受压时的设计应变预测[J].天然气工业,2014,34(12):123-130. 被引量:20
  • 9Liu Xiaoben, Zhang Hong, Chen Yanfei. Strain predic-tion of X80 steel pipeline at strike-slip fault under com-pression combined with bending [C] ∥Proceedings ofthe 2015 ASME Pressure Vessels & Piping Conference,July 19-23, 2015, Boston, USA.
  • 10Takada S, Hassani N, Fukuda K. A new proposal for simplified design of buried steel pipes crossing activefaults [J] . Earthquake Engineering & Structural Dy-namics, 2001, 30 (8): 1243-1257.

二级参考文献40

共引文献109

同被引文献89

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部