期刊文献+

尖楔前体飞行器FADS-α的求解精度研究 被引量:8

Research on solving accuracy for FADS-α applied to the vehicle with sharp wedged fore-bodies
原文传递
导出
摘要 对用于尖楔前体飞行器的嵌入式大气数据传感系统(Flush Air Data Sensing System,FADS)的不同攻角求解方案(FADS-α)的精度进行研究.对比分析了某尖楔前体飞行器FADS系统的三种攻角实现方案的精度及可行性:(1)将尖楔前缘作为小钝头处理,采用经典的三点式算法建立FADS系统的攻角求解方法;(2)基于压缩波-压缩波理论及膨胀波-压缩波理论建立了FADS系统的理论模型,并发展了相关的迭代算法验证模型的精度及可靠性,建立了FADS系统的攻角实现方案;(3)利用BP神经网络代替FADS系统空气动力学模型的方法,建立了FADS系统的攻角实现方案.针对尖楔前体飞行器FADS系统的特点,设计了一个具有双隐含层的神经网络模型,并对模型的精度进行了验证.结果表明,3种求解方案精度都能满足实际需求.但是方案(1)工程实现困难,方案(2),(3)建立的针对尖楔前体飞行器的FADS系统的求解方案易于实现,且方案(2)的精度优于方案(3). Solving accuracy for Angle of Attack based on the Flush Air Data Sensing System (FADS-a) applied to the vehicle with sharp wedged fore-bodies is researched. Three different methods for FADS-ct applied to the vehicle with sharp wedged fore-bodies are compared systemically in this paper. (1) FADS-α solving algorithm are developed based on the classic triple algorithm by treating sharp wedged fore-bodies as small blunt fore-bodies. (2) Theoretical model for the FADS system based on the compressible-compressible wave theory and compressible-expansible wave theory has been built, and the related FADS-α algorithm has also been developed to verify the reliability and the accuracy of the model. (3) The method of Back-Propagation neural network algorithm replacing theoretical model of the FADS system has also been researched as to the vehicle with sharp wedged fore-bodies in the paper. In connection with the characteristics of the FADS system applied to the vehicles with sharp wedged fore-bodies, neural network architecture with two hidden layers for the FADS-α algorithm is designed and performed. Among these three methods for FADS-α developed as to the vehicle in this paper, the results show that the solving algorithm and the theoretical model are reliable, and the solving accuracy for all these three methods can satisfy the engineering demands, but allowing for the actual realization, method (1) can hardly be realized because of its small sizes in the fore-bodies. As to the method (2) and method (3), both of them can be easily realized actually. Allowing for the solving accuracy for angle of attack, method (2) has a better accuracy than method (3).
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2015年第12期93-103,共11页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金资助项目(批准号:61273153)
关键词 嵌入式大气数据传感系统 攻角 尖楔前体 钝前体 压缩波 膨胀波 BP神经网络 FADS, angle of attack, sharp wedged fore-bodies, blunt fore-bodies, compressible wave, expansible wave,Back-Propagation neural network
  • 相关文献

参考文献24

  • 1Cobleigh B R, Whitmore S A, Haering Jr E A, et al. Flush Air Data Sensing (FADS) system calibration procedures and results for blunt fore-bodies. NASA Tech Pub, 1999-209012, 1999.
  • 2Whitmore S A, Moes T R. Measurement uncertainty and feasibility study of a flush air data system for a hypersonic flight experiment. NASA Tech Memo, 1994-4627, 1994.
  • 3John C P, Earl K R. Flight evaluation of the X-15 ball nose flow-direction sensor as an airdate system. NASA Tech Note, D-2923, 1965.
  • 4Hillje E R, Nelson R L. Ascent air data system results from the space shuttle flight test program. AIAA Paper, 1980, AIAA-80-0422.
  • 5Siemers P M, Wolf H. Shuttle entry air data system concepts applied to space shuttle orbiter flight pressure data to determine air data. AIAA Paper, 1983, AIAA-83-0118.
  • 6Siemers P M, Wolf H. Shuttle entry air data system (SEADS)-flight verification of an advanced air data system concept. AIAA Paper, 1988, AIAA-88-2104.
  • 7Hillje E R, Nelson R L. Post flight analysis of the space shuttle ascent air data system. AIAA Paper, 1981, AIAA-81-2457.
  • 8Whitmore S A, Mores T R, Larson T J. High angle-of attack flush air data sensing system. J Aircraft, 1992, 29:915-91.
  • 9Whitmore S A, Cobleigh B R, Hearing E A. Design and calibration of the X-33 flush air data sensing (FADS) system. NASA Tech Memo, 1998-206540, 1998.
  • 10Bahm C, Baumann E, Martin J. The X-43A Hyper-X Mach 7 Flight 2 guidance, navigation, and control overview and flight test results. AIAA Paper, 2005, AIAA-2005-3275.

二级参考文献36

  • 1张斌,于盛林,邵笑杰,陈芳.嵌入式飞行参数传感系统的设计与可行性验证[J].测控技术,2004,23(z1):396-398. 被引量:5
  • 2MarquesJP 吴遗飞译.模式识别-原理、方法及应用[M].北京:清华大学出版社,2002.231-234.
  • 3CobleighB R, Whitmore S A, Haering E A. Flush airdata sensing(FADS) system calibration procedures and results for blunt forebodies [R]. California: Dryden Flight Research Center Edwards,1999.
  • 4Whitmore S A, Cobleigh B R, Haering E A. Design and calibration of the X-33 flush airdata sensing (FADS) system [R].California: Dryden Flight Research Center Edwards, 1998.
  • 5Johnston I A, Jacobs P A. A study of flush air data system calibration using numerical simulation [R]. Brisbane Australia: Department of Mechanical Engineering, The University of Queensland,1998.
  • 6Wang G R, Wei Y M, Qiao S Z. Generalized inverses: theory and computations [M]. Beijing/New York : Science Press, 2004.
  • 7飞思科技产品研发中心.MATLAB6.5辅助神经网络设计[M].北京:电子工业出版社,2002.
  • 8加卢什金 A N.神经网络理论[M].北京:清华大学出版,2002.
  • 9Rohloff T J.Development and evaluation of neural network flush air data sensing systems[D].Los Angles:University of California,1998.
  • 10Whitmore S A,Cobleigh B R,Haering E A.Design and calibration of the X-33 flush airdat sensing (FADS) system[R].NASA/TM-1998-206540,1998.

共引文献30

同被引文献38

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部