期刊文献+

4D打印——未来技术的先锋 被引量:4

4D printing- the future technology pioneer
下载PDF
导出
摘要 4D打印技术是未来技术的先锋,主要原理是在3D打印技术基础上,以可变形材料作为驱动执行单元,利用材料的可变形特性,将成型构件的设计参数、成型工艺、变形行为和最终结构目标等信息设计到初始构型中。成型后利用外场激励介质刺激,通过弯曲、扭曲、膨胀等自我变形获得预设三维空间构型,是一种集成产品设计、制造、装配为一体的创新技术,即4D打印方法。本文主要探索4D打印的发展趋势以及变形机理,验证理论方法的正确性。 4D printing is a pioneer of the future technology, the main principle is based on 3D printing, deformable material as drive execution units, use of material deformation characteristics, design parameters and molding process of molding components, deformation behavior and the structure of target information such as the final design to the initial configuration. Using field stimulated medium after forming, bending, twist, swell deformation was a default configuration, three-dimensional space is a kind of integrated product design, manufacturing and assembly for the integration of technology innovation, namely 4D printing method. In this paper, we explore the 4D printing design and manufacture of rule and deformation field coupling drive mechanism, and the tiny metal droplet electromagnetic constraint component forming mechanism and forming process, using 4D printing principle to realize its manufacturing fonlaing, validating theory method.
出处 《中国铸造装备与技术》 CAS 2015年第6期4-6,共3页 China Foundry Machinery & Technology
基金 院级课题"4D打印成型创新技术探索(Gfy15-09)"
关键词 4D打印 可变形材料 微小构件 技术先锋 4D Print Deformable Materials Minor Components Stents
  • 相关文献

参考文献16

  • 1Oxman N. Variable property rapid prototyping: Inspired by nature, where form is characterized by heterogeneous compositions, the paper presents a novel approach to layered manufacturing entitled variable property rapid prototyping[J]. Virtual and Physical Prototyping, 2011, 6(1): 3-31.
  • 2Ge Q, Qi H J, Dunn M L. Active materials by four-dimension printing[J]. Applied Physics Letters, 2013, 103(13): 131901.
  • 3Tibbits S, Cheung K. Programmable materials for architectural assembly and automation[J]. Assembly Automation, 2012, 32(3): 216-225.
  • 4Tibbits S, Cheung K. Programmable materials for architectural assembly and automation[J]. Assembly Automation, 2012, 32(3): 216-225.
  • 5Tibbits S. Design to Self-Assembly[J]. Architectural Design, 2012, 82(2): 68-73.
  • 6Tibbits S. 4D Printing: Multi-Material Shape Change[J]. Architectural Design, 2014, 84(1): 116-121.
  • 7Reilly M. The future will build itself[J]. New Scientist, 2013, 220(2942): 28-30.
  • 8Liu Y, Gall K, Dunn M L, et al. Thermomechanics of shape memory polymer nanocomposites[J]. Mechanics of Materials, 2004, (10): 929-940.
  • 9Lan X, Liu Y, Lv H, et al. Fiber reinforced shape-memory polymer composite and its application in a deployable hinge[J]. Smart Materials and Structures, 2009, 18(2): 024002.
  • 10Lendlein A, Jiang H, J ii nger O, et al. Light-induced shape-memory polymers[J]. Nature, 2005, 434(7035): 879-882.

二级参考文献20

  • 1高琛,黄孙祥,陈雷,刘磁辉,刘小楠,鲍骏.液滴喷射技术的应用进展[J].无机材料学报,2004,19(4):714-722. 被引量:26
  • 2高胜东,姚英学,崔成松.金属均匀液滴束流技术的应用[J].材料导报,2006,20(1):95-97. 被引量:8
  • 3锁红波.揭开电子束快速成形技术的神秘面纱[N].中国航空报,2013.
  • 4Yan-pu Chat el al.Manufaeturing of micro thin-walled metal parts by micro-droplet deposition[J].Journal of Materials Proeessing Technology.2012(212):484-491.
  • 5ZHANG Shu-guang,HE Li-jun,ZHU Xne-xin.Capillary wave formation on excited solder jet and fabrication of lead-free solder ball[C].Trans.Nonferrous Met.Soc.China.2005,15(5):997-1002.
  • 6Hsuan-Chung Wu,Huey-Jiuan Lin,Weng-Sing Hwang.A numeri- cal study of the effect of operating parameters on drop formation in a squeeze mode inkjet device[J].MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING,2005(13):17-34.
  • 7T.W.Shield,D.B.Bogy,F.E.Talke.Drop formation by DOD ink - et nozzles:A comparison of experiment and numerical simulation[C].IBM 1.RES.DEVELOP,1987,31(1):96-110.
  • 8V Batty,D.Poulikakos,J.Giannakouros.Three-dimensional presolidification heat transfer and fluid dynamics in molten microdroplet deposition[J].International Journal of Heat and Fluid Flow,2002(23):234-241.
  • 9张安峰,李涤尘,卢秉恒.激光直接金属快速成形技术的研究进展[J].兵器材料科学与工程,2007,30(5):68-73. 被引量:43
  • 10陈君,张群莉,姚建华,傅纪斌.金属材料的激光吸收率研究[J].应用光学,2008,29(5):793-798. 被引量:50

共引文献50

同被引文献67

  • 1章程斌,莫健华,黄树槐.光固化成形系统激光束光斑的在线检测与位置补偿[J].激光杂志,2003,24(3):60-61. 被引量:3
  • 2郭光文,王序.人体解剖彩色图谱[M].2版.北京:人民卫生出版社,2014:173-176.
  • 3王运赣.快速成型技术.华中理工大学出版社,1999.9.
  • 4L Li, Q Sun; C Bellehumeur; P GU. Composite modeling andanalysis for fabrication of FDM {Hototypes with locall[J].Jounud ofManufacturing Processes, 2002,4(2), 129-141.
  • 5John DeGaapari. High-strength prototypes[J].MechanicalEngineering)2003,125(9): 28-30.
  • 6Weihong Zhong, Fan Li et al. Short fiber reinforced composites forfused deposition modelingfj]. Materials Science and Engineering,2001,301(2):125-130.
  • 7成塑材料及耗材.http://www.tiertime. Com/MateriaJ. html ,2005.
  • 8Joe Hiemenz. Engineering plastics for functional prototypes[J].Advanced Materials Processes, 2003,161(1): 54-55.
  • 9Gray R W,Bair d DG, Bohn J H . Effects of processing conditions onshort TLCP fiber reinforced FDM parts[ J] .Rapid Prototyp J, 1998,41: 14- 25.
  • 10Karalekas D E. Study of the mechanical properties of nonwovenfibremat reinforced photopolymers used in rapid prototyping [ J].Materials & Design, 2003, 24( 8): 665 670.

引证文献4

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部