期刊文献+

一类拟线性椭圆方程边界爆破解的边界层估计

Layer estimates of boundary blow-up solutions for a class of quasilinear elliptic equations
原文传递
导出
摘要 研究p-Laplace方程Δpu=λf(u)的边界爆破问题,其中Δpu=div(|▽u|p-2▽u)且p>1,实数λ为正参数,得到了边界爆破解的边界层估计. This paper studies the boundary blow-up problem of p-Laplace equationΔpu=λf(u),whereΔpu=div(|▽u|p-2▽u),with p1andλis a positive parameter,and obtains the boundary layer estimates of the boundary blow-up solution.
机构地区 南通大学理学院
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2015年第3期8-11,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11271209)
关键词 P-LAPLACE方程 边界爆破解 边界层估计 p-Laplace equations boundary blow-up solutions boundary layer estimates
  • 相关文献

参考文献11

  • 1DU Yihong , GUO Zongming. Liouville type results and eventual flatness of positive solutions for p-Laplacian equations[J]. Adv Differ Equ, 2002, 7(12): 1479-1512.
  • 2MATEROJ. Quasilinear elliptic equations with boundary blow-up[J].J Anal Math, 1996, 69: 229-247.
  • 3DU Yihong , MA Li. Logistic type equations on R" by a squeezing method involving boundary blow-up solutions[J].J London Math Soc, 2001, 64(2): 107-124.
  • 4DU Yihong, GUO Zongming. Boundary blow-up solutions and their applications in quasilinear elliptic equations[J].J Anal Math, 2003, 89: 277-302.
  • 5GUO Zongming. Uniqueness and flat core of positive solutions for quasi linear eigenvalue problems in general smooth domains[J]. Math Nachr . 2002, 243: 43-74.
  • 6GARCIA-MELIANJ, SABINA de LISJ. Stationary profiles of degenerate problems when a parameter is large[J]. Differ Integral Equ, 2000, 13(10/12): 1201-1232.
  • 7PENG Hongyun , RUAN Lizhi , XIANGJianlin. A note on boundary layer of a nonlinear evolution system with damping and diffusions[J].J Math Anal Appl , 2015, 426(2): 1099-1129.
  • 8张瑜,侯成敏.带有p-Laplacian算子的分数阶多点边值问题正解的存在性[J].扬州大学学报(自然科学版),2014,17(3):9-13. 被引量:2
  • 9DU Yihong, GUO Zongming. Uniqueness and layer analysis for boundary blow-up solutions[J].J Math Pures Appl , 2004. 83(6): 739-763.
  • 10PUCCI P. SERRINJ. A note on the strong maximum principle for elliptic differential inequalities[J].J Math Pures Appl , 2000, 79(1): 57-71.

二级参考文献10

  • 1GOODRICH C S. Existence and uniqueness of solutions to a fractional difference equation with nonloeal condi- tions [J]. Comput Math Appl, 2011, 61(2): 191-202.
  • 2GOODRICH C S. Continuity of solutions to discrete fractional initial value problems [J]. Comput Math Appl, 2010, 59(11): 3489-3499.
  • 3ATICI F M, SENGUL S. Modeling with fractional difference equations [J]. J Math Anal Appl, 2010, 369(1): 1-9.
  • 4ATICI F M, ELOE P W. Two-point boundary value problems for finite fractional difference equations [J]. J Differ Equ Appl, 2011, 17(4): 445-456.
  • 5HUANG Zhongmin, HOU Chengmin. Solvability of nonlocal fractional boundary valve problems [J]. Discrete Dyn Nat Soc, 2013, 2013: 1-9.
  • 6XIE Zuoshi, JIN Yuanfeng, HOU Chengmin. Multiple solutions for a fractional difference boundary value prob- lem via variational approach [J]. Abstr Appl Anal, 2012, 2012:1-16.
  • 7HOLM M. The theory of discrete fractional calculus: development and application [D]. Lincoln: University of Nebraska, 2011.
  • 8LANK Q. Multiple positive solutions of semilinear differential equations with singularities [J] J London Math Soc, 2001, 63(3): 690-704.
  • 9MA Dexiang, DU Zengji, GE Weigao. Existence and iteration of monotone positive solutions for multipoint boundary value problem with p-Laplacian operator [J]. Comput Math Appl, 2005, 50(5/6) : 729-739.
  • 10慎闯,何延生,侯成敏.一类有序分数阶差分方程解的存在性[J].扬州大学学报(自然科学版),2013,16(1):12-16. 被引量:5

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部