期刊文献+

微热复合吸氢剂在高真空多层绝热储罐中的实验研究 被引量:4

Adsorption Behavior of Novel Composite H_2-Getter in High Vacuum Multilayer Insulated Cryogenic Tank
下载PDF
导出
摘要 氢气是造成高真空多层绝热储罐夹层真空度下降的主要原因,为此本文搭建了吸氢试验台,研究了廉价微热型吸氢剂CuO+C,在夹层氢气压力较高时,不同吸附温度下的吸氢特性;比较了吸附温度在100℃时,CuO+C和CuO+C+5A的不同吸氢特性;探索了CuO+C+5A吸附氢气达到平衡,充注液氮后,夹层压力随时间的变化;研究表明:复合吸氢剂是化学吸附氢气,最低活化温度为60%,吸附诱导期随着吸附温度的升高,由长变短,在160℃时消失;在高真空多层绝热储罐的内罐外壁底部放置5A分子筛后,平衡压力由220变为8.4 Pa,而达到平衡所需要的时间仅增加了60 h;平衡后向储罐充注液氮,夹层压力随时间成阶梯型变化,经过10 h,夹层真空度达到5.83×10^(-4)Pa,完全满足高真空绝热的使用要求。 The adsorption behavior of the novel micro-thermo composite hydrogen getter, CuO + C powders and 5A molecular sieve of CuO + C for the high vacuum muhilayer insulated cryogenic tank, was characterized with the lab-built test platform. The influence of the adsorption conditions, including the adsorption temperature and cooling time of liquid nitrogen (LN2),on the pressure in the vacuum layers of cryogenic tank was investigated. The results show that the novel low-cost adsorbent is a good getter of residual gases, particularly H2. For example, chemisorption of H2 accounts for the getteringmechanism, with the lowest activation temperature of 60℃ ;as the adsorption temperature increased, the activated period decreased,vanishing at 160℃ ;the 5A CuO + C reduced the equilibrium pressure from 220 to 8.4 Pa and increased the exhaustion time by 60 h. Filling of LN2 reduced the pressure in an irregularly stepped manner, corresponding to the stages of tank-cooling,getter-cooling and residual gas-adsorption,to a pressure to 5.83 × 10……-4 Pa after 10 h.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2015年第11期1305-1309,共5页 Chinese Journal of Vacuum Science and Technology
关键词 吸氢剂 化学吸附 吸氢过程曲线 真空储罐 H2 getter, Chemical adsorption, H2 adsorption process curve, Vacuum tank
  • 相关文献

参考文献13

  • 1符锡理.活性碳和5A分子筛的吸附特性及其在真空获得中的作用[J].低温工程,1994(1):11-16. 被引量:32
  • 2陈树军,汪荣顺,魏蔚,曾宇悟.几种组合吸附剂的吸氢等温线的测定及分析[J].真空科学与技术学报,2009,29(4):435-439. 被引量:23
  • 3谢斯卫,邓冬,汪荣顺.填炭纸在高真空多层绝热中液氮温度下的吸气性能测试[J].真空科学与技术学报,2013,33(6):547-551. 被引量:11
  • 4毕龙生,强游.国产5A分子筛在液氮温度下对N2H2He低压吸附等温线测试[J].真空与低温,1986,(3):23-28.
  • 5Chen SJ, Wang KS, Li XD. Experimental Investigation and Theoretical Analysis on Measurement of Hydrogen Adsorption in Vacuum System[ J]. International Journal of Hydrogen En- ergy,2010,35(9) :4347 - 4353.
  • 6Chen SJ, Li XD, Wang RS, et al. Experimental Investigation on Hydrogen Adsorption Perfonnance of Composite Adsorbent in the Tank with High Vacuum Muhilayer Insulation[J]. Vac- uum,2009,83(9) : 1184 - 1190.
  • 7Hong SS,Shin YH,Kim IT. Residual Gas Survey of Stainless Steel 304 Extreme High Vacuum Chamber with Hot Cathode Ionization Gauge[J]. Measurement,2008,41 (9) : 1026 - 1031.
  • 8Abdel-Samad S, Albdel-Bary M, Kilian K. Residual Gas Anal- ysis in the TOF Vacuum System[ J]. Vacuum, 2005,78( 1 ): 83 - 89.
  • 9Ishikawa Y, Nemanic V. An Overview of Methods to Suppress Hydrogen Outgassing Rate from Austenific Stainless Steel with Reference to UHV and EXV [ J ]. Vacuum, 2003,69 (4) : 501 - 512.
  • 10Porta PD. Gas Problem and Gettering in Sealed-off Vacuum Device[J]. Vacuum, 1996,47(6 - 8) :771 - 777.

二级参考文献23

共引文献44

同被引文献37

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部