期刊文献+

有界随机噪声激励下碰撞系统的稳定性 被引量:2

Stability of a single-degree-of-freedom linear vibroimpact system under boundary random noise excitation
下载PDF
导出
摘要 研究了单自由度线性单边碰撞系统在有界随机噪声参数激励下系统的矩稳定性问题。采用Zhuravlev变换将碰撞系统转化为连续的非碰撞系统,然后用随机平均法得到了关于慢变量的随机微分方程。利用随机线性变化得到了控制第p阶Lyapunov指数的矩阵的特征值。在没有随机扰动的情况下,给出了系统最大Lyapunov指数的解析表达式;在有随机扰动的情况下,给出了系统任意阶矩Lyapunov指数的数值算法,并对理论结果用数值方法进行了仿真计算。理论分析和数值仿真表明:随着随机激励振幅变大,任何正数p阶矩稳定性区域都变小从而使得系统变得不稳定;而当调谐参数趋于零、系统达到参数主共振情况时,系统的稳定性区域变得最小;在一定的参数区域内,随机扰动使得系统稳定化。 The moment stabilities of single-degree-of-freedom linear vibroimpact oscillator with a one-sided barrier to boundary random parametric excitation are investigated. The analysis is based on a Zhuravlev transformation, which converts the system into one of non-vibroimpact, thereby permitting the applications of asymptotic averaging over the period for slowly varying random process of ordinary differentiation equation. The linear stochastic transformation is taken to obtain the eigen-value problem governing the p-th moment Lyapunov exponent. The analytical expression of the largest Lyapunov exponent is obtained in the case when there is no random disturbance, while the p-th moment Lyapunov exponent is obtained numerically in the case when the random disturbance exists. Some numerical simulations and graphs are presented for typical cases. It is found that when the amplitude of the parametric excitation increases, the stability regions will reduce whenever for any positive p-order moment stability. The stability regions will reduce to the minimum value if the detuning parameter tends to zero. In some range of parameter the random disturbance will stabilize the system.
出处 《应用力学学报》 CAS CSCD 北大核心 2015年第5期750-755,893,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(11401096 11326113) 广东省自然科学基金(S2013010014485 S2013010012463) 广东省高等学校学科建设专项基金(2013KJCX0189 2013B020314020 2014KZDXM063)
关键词 线性碰撞系统 参数主共振响应 矩稳定性 Zhuravlev变换 随机平均法 linear vibroimpact system,parametric principal resonance response,moment stability,Zhuravlev transformation method,random averaging method.
  • 相关文献

参考文献23

  • 1Metrikyn V S. On the theory of vibro-impact devices with randomly varying parameters[J]. Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, 1970, 13: 4-8.
  • 2Stratonovich R L. Topics in the theory of random noises[M]. 2rd ed. New York: Gordon and Breach, 1967.
  • 3Jing H S, Shan K C. Exact stationary solutions of the random response of a single-degree-of-freedom vibroimpact system[J]. Journal of Sound and Vibration, 1990, 141(3): 363-373.
  • 4Jing H S, Young M. Random response of a single-degree-of-freedom vibro-impact system with clearance[J]. Earthquake Engineering and Structural Dynamics, 1990, 19: 789-798.
  • 5Huang Z L, Lin Z H, Zhu W Q. Stationary response of multi-degree-of-freedom vibro-impact systems under white noise excitations[J]. Jottrttal of Sound and Vibration, 2004, 275(1/2): 223-240.
  • 6Feng Jinqian, Xu Wei, Rong Haiwu, et al. Stochastic response of Duffing-Van der Pol vibro-impaet system under additive and multiplieative random excitations[J]. International Journal of Non-Linear Mechanics, 2009, 44(1): 51-57.
  • 7Zhuravlcv V F. A method for analyzing vibration-impact systems by means of special functions[J]. Mechanics of Solids, 1976, 11: 23-27.
  • 8Iourtchenko D V, Dimantberg M F. Energy balance for random vibrations of piecewisc-conservative systems[J]. Journal of Sound andVibration, 2001, 248(5): 913-923.
  • 9Feng Q, He H. Modelling of the mean Poineara map on a class of random impact oseiUators[J].European Journal of Mechanics A/Solids, 2003, 22(2): 267-281.
  • 10Iourtehenko D V, Song L L. Numerical investigation of a response probability density function of stochastic vibrnimpact systems with inelastic impacts[J]. International Journal of Non-Linear Mechanics, 2006, 41(3): 447-455.

二级参考文献41

  • 1Brogliato B. Nonsmooth mechanics. London: Springer-Ver- lag, 1999.
  • 2Metrikyn V S. On the theory randomly varying parameters. nykh Zavedenii, Radiofizika, sian) of vibro-impact devices with Izvestiya Vysshikh Ucheb- 1970, 13:4 -21 (in Rus-sian).
  • 3Stratonovich R L. Topics in the mheory of random noise (Vols. 1 and 2). New York:Gordan and Breach, 1963 and 1967.
  • 4Jing H S, Sheu K C. Exact stationary solutions of the ran- dom response of a single-degree-of-freedom vibroimpact sys- tem. Journal of Sound and Vibration, 1990,14:363 - 373.
  • 5Jing H S, Young M. Random response of a single-degree- of-freedom vibroimpact system with clearance. Earthquake Engineering and Structural Dynamics, 1990,19 : 789 - 798.
  • 6Huang Z L, Liu Z H, Zhu W Q. Stationary response of muhi-degree-of-freedom vibro-impact systems under white noise excitations. Journal of Sound and Vibration, 2004, 275 : 223 - 240.
  • 7Feng J Q, Xu W, Rong H W, Wang R. Stochastic re- sponse of Duffing-Van der Pol vibro-impact system under additive and multiplicative random excitations. Internation- al Journal of Non-Linear Mechanics, 2009, 44 : 51 - 57.
  • 8Zhuravlev V F. A method for analyzing vibration-impact systems by means of special functions. Mechanics of Solids, 1976, 11:23 -27.
  • 9Iourtchenko D V, Dimentberg M F. Energy balance for random vibrations of piecewise-conservative systems. Jour- nal of Sound and Vibration, 2001, 248:913-923.
  • 10Feng Q, He H. Modeling of the mean Poincare map on a class of random impact oscillators. European Journal of Me- chanics A/Solids, 2003, 22:267-281.

共引文献5

同被引文献8

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部