期刊文献+

基于元胞量子蜂群算法和信道案例库的认知无线电混合跨层决策引擎研究 被引量:2

Hybrid Cross-layer Decision Engine for Cognitive Radio Based on the CQABC Algorithm and Channel Case Library
下载PDF
导出
摘要 针对认知无线电系统参数重配置问题,提出一种基于元胞量子蜂群算法和信道案例库的混合跨层认知决策引擎。该认知决策引擎充分考虑无线通信网络各层参数,以网络整体性能最优为优化目标;提出的元胞量子蜂群算法利用双策略对种群进行混沌初始化,设计了基于元胞自动机原理和社会认知策略的快速量子旋转角调整策略用于实现引领蜂和跟随蜂的邻域搜索;构建基于信道增益的认知无线电参数案例库,用于实现快速决策。仿真结果表明,该认知决策引擎能够根据无线通信环境和用户需求的变化,动态地进行参数的重配置,同时其在收敛速度、收敛精度和算法稳定性上都明显优于基于二进制人工蜂群算法和量子遗传算法的认知决策引擎。 In order to treat the problem of parameter reconfiguration of the cognitive radio system,an improved cross-layer decision engine based on the cellular quantum artificial bee colony algorithm( CQABC) and the channel gain information was proposed. In the decision engine,the parameters at different layers of a wireless communication network were considered and the overall performance of the network was the optimization goal. A fast strategy with quantum rotation angle adjustment based on cellular automata and social cognitive strategy and two kinds of chaos initialization methods were used in the proposed CQABC. Furthermore,the historical experience and expertise were referred to build up the case library of the cognitive radio parameters based on the channel gain for a quick decisionmaking process. The results of simulation showed that the cross-layer decision engine is capable of dynamic re-configuration of parameters according to changes in the wireless communication environment and user requirements,meanwhile the proposed decision engine has better convergence,precision and stability than the traditional decision engine based on binary artificial bee colony algorithm and quantum genetic algorithm.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2015年第6期121-130,共10页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然基金资助项目(61379005 61072138)
关键词 认知无线电 跨层决策引擎 元胞量子蜂群算法 信道案例库 cognitive radio cross-layer decision engine cellular quantum artificial bee colony channel case library
  • 相关文献

参考文献20

  • 1Mitola J. Cognitive radio: Making software radios more personal[ J]. IEEE Personal Communications, 1999,6(4) : 13 -18.
  • 2李方伟,柴源,朱江.认知无线网中基于队列博弈的频谱选择算法[J].四川大学学报(工程科学版),2013,45(4):149-155. 被引量:6
  • 3Mitola J. Cognitive radio [ D ]. Stockholm, Sweden : Royal Institute of Technology, 2000.
  • 4Rieser C J. Biologically inspired cognitive radio engine model utilizing distributed genetic algorithms for secure and robust wireless communications and networking[ D]. Blacksburg:Virginia Polytechnic Institute and State Univer- sity, 2004.
  • 5Yu Y, Tan X, Xie Y, et al. Cognitive radio decision engine based on binary chaotic particle swarm optimization[ J]. Journal of Information & Computational Science,2013,10(12) :3751 -3761.
  • 6赵知劲,郑仕链,尚俊娜,孔宪正.基于量子遗传算法的认知无线电决策引擎研究[J].物理学报,2007,56(11):6760-6766. 被引量:34
  • 7Zhao N,Li S,Wu Z. Cognitive radio engine design based on ant colony optimization[ J]. Wireless Personal Commu- nications ,2012,65 ( 1 ) : 15 - 24.
  • 8Kaur K, Rattan M,Patterh M S. Biogeography-based op- timisation of cognitive radio system [ J ]. International Journal of Electronics ,2014,101 ( 1 ) :24 - 36.
  • 9李鑫滨,石爱武.基于二进制人工蜂群算法的认知无线电决策引擎[J].燕山大学学报,2012,36(5):439-444. 被引量:5
  • 10Pradhan P M,Panda G. Comparative performance analy- sis of evolutionary algorithm based parameter optimization in cognitive radio engine: A survey [ J ]. Ad Hoc Net- works,2014,17 : 129 - 146.

二级参考文献49

  • 1罗小平,韦巍.生物免疫遗传算法的几乎处处强收敛性分析及收敛速度估计[J].电子学报,2005,33(10):1803-1807. 被引量:11
  • 2周殊,潘炜,罗斌,张伟利,丁莹.一种基于粒子群优化方法的改进量子遗传算法及应用[J].电子学报,2006,34(5):897-901. 被引量:33
  • 3黄思训,蔡其发,项杰,张铭.台风风场分解[J].物理学报,2007,56(5):3022-3027. 被引量:27
  • 4朱刚,马良.函数优化的元胞蚂蚁算法[J].系统工程学报,2007,22(3):305-308. 被引量:18
  • 5戴朝华,朱云芳,陈维荣,林建辉.云遗传算法及其应用[J].电子学报,2007,35(7):1419-1424. 被引量:84
  • 6Bernabe Dorronsoro,Enrique Alba.A simple cellular genetic algorithm for continuous optimization[A].IEEE Congress on Evolutionary Computation[C].Vancouver,BC,Canada,July 2006.2838-2844.
  • 7E Alba,B Dorronsoro,M Giacobini,et al.Decentralized cellular evolutionary algorithms[A].Handbook of Bioinspired Algorithms and Applications[C].CRC Press,2005.565-591.
  • 8G Rudolph,J Sprave.A cellular genetic algorithm with self-adjusting acceptance threshold[A].Genetic Algorithms in Engineering Systems:Innovations and Applications on IEE[C].Sheffield,UK,September 1995.365-372.
  • 9E Alba,B Dorronsoro.The exploration/exploitation tradeoff in dynarnic cellular genetic algorithms[J].IEEE Trans.on Evolutionary Computation,2005,9(2):126-142.
  • 10E Alba and J Troya.Cellular evolutionary algorithms:evaluating the influence of ratio[A].Proceedings of the 6th International Conference on Parallel Problem Solving from Nature[C].Berlin,Germany,2000.29-38.

共引文献90

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部