期刊文献+

基于SVM及电流牵扯效应的金属缺陷分类识别方法 被引量:5

Method for Defect Classification Based on SVM and Current Drag Effect
下载PDF
导出
摘要 金属在服役期间经常存在一些由应力、腐蚀和疲劳造成的缺陷,在众多的缺陷检测技术中,交流电位法作为一种无损检测技术在检测腐蚀坑和裂纹方面得到了广泛应用。用交流电位法检测不同缺陷时,由于几何形态的差异,缺陷深度的计算方法也不相同。因此需要在计算缺陷深度之前对所检测区域的缺陷类型做出识别。作者目的在于寻找一种高精度的缺陷分类识别方法。并且针对腐蚀坑和裂纹这两种最常见的金属缺陷,根据其对电流的牵扯效应不同,提出利用邻近检测区域的4个牵扯因子作为缺陷区域的特征向量建立分类模型。在大量仿真计算的基础上,分别建立坑蚀和裂纹的特征向量集,并由这些数据集训练得到基于遗传算法(GA)优化的支持向量机(SVM)分类模型。仿真测试结果中数据测试集分类精度较高,平板实验也得到了较高的识别精度。实验结果表明文中提出的缺陷分类识别方法对腐蚀坑和裂纹的分类识别具有很高的精度。 An approach which can be used to classify different defects of metal structure accurately was proposed. Two kinds of typical defect were studied based on an eigenvector which consists of 4 adjacent drag factors. After large quantities of simulation,the pitting and crack eigenvector datasets were built. Moreover,a support vector machine( SVM) optimized by genetic algorithm and trained by eigenvector datasets was obtained. Simulation test data showed that the trained and optimized SVM model has a high classification accuracy,and the metal plate experiment also indicated that the model has a good precision in actual defect classification. All the experiments showed that the proposed approach used for defect classification has high precision in pitting and crack classification.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2015年第6期172-178,共7页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(61271329) 四川省科技支撑计划资助项目(2012GZ0094)
关键词 无损检测 缺陷分类 支持向量机 遗传算法 牵扯因子 non-destructive testing(NDT) defect classification support vector machine(SVM) genetic algorithm(GA) drag factor
  • 相关文献

参考文献23

  • 1Raja M K, Mahadevan S, Rao B P C, et al. Influence of crack length on crack depth measurement by an alterna- ting current potential drop technique [ J]. Measurement Science and Technology,2010,21 (10) : 105702.
  • 2Hola J, Schabowicz K. State-of-the-art non-destructive methods for diagnostic testing of building structures-antici- pated development trends[ J ]. Archives of Civil and Me- chanical Engineering,2010,10 (3) :5 - 18.
  • 3Bernieri A, Ferrigno L, Laracca M, et al. An SVM ap- proach to crack shape reconstruction in eddy current tes- ting [ C ]//Instrumentation and Measurement Technology Conference,2006. IMTC 2006. Proceedings of the IEEE. IEEE,2006:2121 - 2126.
  • 4Merah N. Detecting and measuring flaws using electric potential techniques[ J]. Journal of Quality in Maintenance Engineering, 2003,9 ( 2 ) : 160 - 175.
  • 5Wan Z, Liao J, Tian G Y, et al. Investigation of drag effect using the field signature method [ J ]. Measurement Science and Technology, 2011,22 (8) :085708.
  • 6万正军,廖俊必,王裕康,殷国富.基于电位列阵的金属管道坑蚀监测研究[J].仪器仪表学报,2011,32(1):19-25. 被引量:41
  • 7Gan F,Wan Z,Li Y,et al. Improved formula for localized corrosion using field signature method [ J 3- Measurement, 2015,63 : 137 - 142.
  • 8Tsyurmasto P, Zabarankin M, Uryasev S. Value-at-risk sup- port vector machine: Stability to outliers [ J]. Journal of Combinatorial Optimization, 2014,28 ( 1 ) : 218 - 232.
  • 9Akram N A,Isa D,Rajkumar R,et al. Active incremental Support Vector Machine for oil and gas pipeline defects prediction system using long range ultrasonic transducers [ J]. Ultrasonics ,2014,54(6) : 1534 - 1544.
  • 10孙林,杨世元,吴德会.X射线底片焊缝缺陷的支持向量机识别方法[J].应用科学学报,2008,26(4):418-424. 被引量:10

二级参考文献105

共引文献279

同被引文献42

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部