期刊文献+

Effect of Substituent Groups on the Syntheses of Two Ag Coordination Polymers Based on Tetrazole-yl Acylamide 被引量:1

Effect of Substituent Groups on the Syntheses of Two Ag Coordination Polymers Based on Tetrazole-yl Acylamide
下载PDF
导出
摘要 Two novel Ag coordination polymers based on tetrazole-yl acylamide, Ag(NTAA) (1, H-NTAA = N-(1H-tetrazol-5-yl)acetamide) and Ag(NTPA) (2, H-NTPA = N-(1H-tetrazol- 5-yl)propionamide) have been synthesized under solvothermal conditions and characterized by single-crystal X-ray diffraction. Compound 1 features a 3-connected 4.82-fes network and compound 2 displays a ladder-like chain. The different structures between 1 and 2 are mainly related with the substituent groups oftetrazole-yl acylamide. Two novel Ag coordination polymers based on tetrazole-yl acylamide, Ag(NTAA) (1, H-NTAA = N-(1H-tetrazol-5-yl)acetamide) and Ag(NTPA) (2, H-NTPA = N-(1H-tetrazol- 5-yl)propionamide) have been synthesized under solvothermal conditions and characterized by single-crystal X-ray diffraction. Compound 1 features a 3-connected 4.82-fes network and compound 2 displays a ladder-like chain. The different structures between 1 and 2 are mainly related with the substituent groups oftetrazole-yl acylamide.
出处 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2015年第11期1729-1734,共6页 结构化学(英文)
基金 Supported by NNSFC(91222105,21221001)
关键词 coordination polymers silver crystal structure TOPOLOGY electron donating coordination polymers silver crystal structure topology electron donating
  • 相关文献

参考文献30

  • 1Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O'Keeffe, M.; Yaghi, O. M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties, d. Am. Chem. Soc. 2009, 131, 3875-3877.
  • 2Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126-1162.
  • 3Wu, D. F.; Guo, Z. Y.; Yin, X. B.; Pang, Q. Q.; Tu, B. B.; Zhang, L. J.; Wang, Y. G.; Li, Q. w. Metal-organic frameworks as cathode materials for Li-O2 batteries. Adv. Mater. 2014, 26, 3258-3262.
  • 4Hart, Y. Z.; Qi, P. F.; Feng, X.; Li, S. W.; Fu, X. T.; Li, H. W.; Chen, Y. F.; Zhou, J. W.; Li, X. G.; Wang, B. In situ growth of MOFs on the surface of Si nanoparticles for highly efficient lithium storage: Si@MOF nanocomposites as anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 2178-2182.
  • 5Lee, T. I.; Jegal, J. P.; Park, J. H.; Choi, W. J.; Lee, J. O.; Kim, K. B.; Myoung, J. M. Thr-dimensional layer-by-layer anode structure basl on Co304 nanoplates strongly tied by capillary-like multiwall carbon nanotubes for use in high-performance lithium-ion batteries. ACS Appl. Mater Interfaces 2015, 7, 3861-3865.
  • 6Manna, K.; Zhang, T.; Greene, F. X.; Lin, W. B. Bipyridine- and phenanthroline-basod metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation, d. Am. Chem. Soc. 2015, 137, 2665-2673.
  • 7Horcajada, E; Gref, R.; Baati, T.; Allan, E K.; Maurin, (2; Couvreur, E; Frey, G R.; Serre, E.; Morris, C. Metal-organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232-1268.
  • 8Kreno, L. E.; Leong, K.; Farha, O. K.; AIlendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105-1125.
  • 9Li, J. R.; Sculley, J.; Zhou, H. C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869-932.
  • 10Liu, B. Metal-organic framework-based devices: separation and sensors, d. Mater. Chem. 2012, 22, 10094-10101.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部